CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DI5 0B

1 Propositional Logic Review

Note 0 (a) For the following parts, suppose P is true, and Q is false. Evaluate the following propositions
Note 1 as either true or false.

1) PAQ (i) P = Q

1) P = Q (iv) -Q = P

(b) Convert the following English sentence into propositional logic:
Every integer has at least one divisor.

(c) Convert the following propositional logic statement into English:

~(Vx,y €Z)[(x<y) = (FT€Z)(x<z<Yy)].

Solution:
(a) (1) False. Q is false, making the AND false.
(11) False. An implication is false only when we have True — False.
(ii1) True. This is a vacuous implication, since the hypothesis —P is false.
(iv) False. This is identical to part (i1), and notably this is the contrapositive.
(b) (Vx e Z)(Jy e Z)(y|x)

(c) It is not the case that for any two integers x,y, if x is less than y then there is an integer
greater than x and less than y. More succinctly, it is not the case that between any two
distinct integers, there is another integer.

Proofs Intro

Note 2 In this course, we’ll be working a lot with proofs: a proof is a sequence of logical deductions which
establishes that a particular statement is true. Here are four proof strategies that we typically use
to prove that a statement is true.

1. Direct Proof: To prove P —- (Q, assume P, [-- -], therefore Q.

—_
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Note 2

Note 2

2. Proof by Contraposition: To prove P —> (), it is equivalent to prove ~Q =— —P. As
such, assume —Q, [-- -], therefore —P.

A proof by contraposition relies on the fact that the contrapositive is equivalent to the original
implication: P — Q =-0 — —P.

3. Proof by Contradiction: To prove P, assume —P, [---], therefore R, [---], therefore —R.
This is a contradiction, since R and —R cannot both be true, so P must be true.

In a proof by contradiction, the propositions R and —R often arise naturally as you construct
the proof; in the majority of cases, you do not decide on R beforehand, and it can often be
hard to determine what R should be.

4. Proof by Cases: Divide the problem into parts, and tackle each separately. Oftentimes, each
case will involve one of the other proof types.

As you get familiar with these proof techniques, it can often be unclear which strategy to take:
this is expected! It’s natural to start out through trial and error: attempt a proof strategy, and if
it doesn’t work out, try another. There is no magical rule to tell you how to prove a statement:
as you write more and more proofs, you’ll likely find some patterns that indicate that a particular
proof strategy may be most suitable for the claim. The best way to get better at writing proofs is to
practice!

2 Perfect Square

(a) Prove that if n? is odd, then n must also be odd.

(b) Prove that if n? is odd, then n? can be written in the form 8k + 1 for some integer k.

Solution:

(a) We will proceed by a proof by contraposition; the contrapositive of the statement is “if # is
even, then n? is also even”. Here, since 7 is even, we can write n = 2k for some integer k.
This makes n?> = (2k)? = 4k* = 2(2k?), which is even, as desired. By contraposition, this
means that if n2 is odd, then n must also be odd.

(b) We will proceed with a direct proof. From the previous part, since n® is odd, # is also odd,
i.e., of the form n = 2 + 1 for some integer [. Then, n> = 41> + 4141 =4I(l+ 1) + 1. Since
one of / and / + 1 must be even, I(I 4 1) is of the form 2k for some integer k and n> = 8k +- 1.

3 Numbers of Friends

Prove that if there are n > 2 people at a party, then at least 2 of them have the same number of
friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends
with Bob, then Bob is also friends with Alice.

(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where n > m, at
least one container must contain more than one item. You may use this without proof.)
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Note 2

Solution:

We will prove this by contradiction. Suppose the contrary that everyone has a different number of
friends at the party. Since the number of friends that each person can have ranges from 0 ton — 1,
we conclude that forevery i € {0, 1,...,n— 1}, there is exactly one person who has exactly i friends
at the party. In particular, there is one person who has n — 1 friends (i.e., friends with everyone),
is friends with a person who has 0 friends (i.e., friends with no one). This is a contradiction since
friendship is mutual.

Here, we used the pigeonhole principle because assuming for contradiction that everyone has a
different number of friends gives rise to n possible containers. Each container denotes the number
of friends that a person has, so the containers can be labelled 0,1,...,n — 1. The objects assigned
to these containers are the people at the party. However, containers 0, n — 1 or both must be empty
since these two containers cannot be occupied at the same time. This means that we are assigning
n people to at most n — 1 containers, and by the pigeonhole principle, at least one of the n — 1
containers has to have two or more objects i.e. at least two people have to have the same number
of friends.

4 Pebbles

Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose
that for every way of choosing one pebble from each column, there exists a red pebble among the
chosen ones.

Prove that there must exist an all-red column.

Solution: We give a proof by contraposition; the contrapositive is “if there does not exist an all-red
column, then there is always a way of choosing one pebble from each column such that there does
not exist a red pebble among the chosen ones”.

Suppose there does not exist an all-red column. This means that we can always find a blue pebble
in each column. Therefore, if we take one blue pebble from each column, we have a way of
choosing one pebble from each column without any red pebbles. This is the negation of the original
hypothesis, so we are done.

We can also approach the problem through contradiction; the logic stays almost exactly the same,
and we start with the negation of the conclusion: that there does not exist an all-red column. The
same reasoning above allows us to conclude that there will always exist a way of choosing one
pebble from each column such that all pebbles are blue (i.e. no pebbles are red).
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