## 1 Perfect Square

(a) Prove that if $n^{2}$ is odd, then $n$ must also be odd.
(b) Prove that if $n^{2}$ is odd, then $n^{2}$ can be written in the form $8 k+1$ for some integer $k$.

## 2 Numbers of Friends

Prove that if there are $n \geq 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.
(Hint: The Pigeonhole Principle states that if $n$ items are placed in $m$ containers, where $n>m$, at least one container must contain more than one item. You may use this without proof.)

## 3 Pebbles

Note 2 Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose that for every way of choosing one pebble from each column, there exists a red pebble among the chosen ones.

Prove that there must exist an all-red column.

