## 1 Natural Induction on Inequality

Note 3 Prove that if $n \in \mathbb{N}$ and $x>0$, then $(1+x)^{n} \geq 1+n x$.

## Solution:

- Base Case: When $n=0$, the claim holds since $(1+x)^{0} \geq 1+0 x$.
- Inductive Hypothesis: Assume that $(1+x)^{k} \geq 1+k x$ for some value of $n=k$ where $k \in \mathbb{N}$.
- Inductive Step: For $n=k+1$, we can show the following:

$$
\begin{aligned}
(1+x)^{k+1}=(1+x)^{k}(1+x) & \geq(1+k x)(1+x) \\
& \geq 1+k x+x+k x^{2} \\
& \geq 1+(k+1) x+k x^{2} \geq 1+(k+1) x
\end{aligned}
$$

By induction, we have shown that $\forall n \in \mathbb{N},(1+x)^{n} \geq 1+n x$.

## 2 Make It Stronger

Note 3 Suppose that the sequence $a_{1}, a_{2}, \ldots$ is defined by $a_{1}=1$ and $a_{n+1}=3 a_{n}^{2}$ for $n \geq 1$. We want to prove that

$$
a_{n} \leq 3^{\left(2^{n}\right)}
$$

for every positive integer $n$.
(a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_{n} \leq 3^{\left(2^{n}\right)}$ ? Attempt an induction proof with this hypothesis to show why this does not work.
(b) Try to instead prove the statement $a_{n} \leq 3^{\left(2^{n}-1\right)}$ using induction.
(c) Why does the hypothesis in part (b) imply the overall claim?

## Solution:

(a) Let's try to prove that for every $n \geq 1$, we have $a_{n} \leq 3^{2^{n}}$ by induction.

Base Case: For $n=1$ we have $a_{1}=1 \leq 3^{2^{1}}=9$.
Inductive Step: For some $n \geq 1$, we assume $a_{n} \leq 3^{2^{n}}$. Now, consider $n+1$. We can write:

$$
a_{n+1}=3 a_{n}^{2} \leq 3\left(3^{2^{n}}\right)^{2}=3 \times 3^{2 \times 2^{n}}=3 \times 3^{2^{n+1}}=3^{2^{n+1}+1}
$$

However, what we wanted was to get an inequality of the form: $a_{n+1} \leq 3^{2^{n+1}}$. There is an extra +1 in the exponent of what we derived.
(b) This time the induction works.

Base Case: For $n=1$ we have $a_{1}=1 \leq 3^{2-1}=3$.
Inductive Step: For some $n \geq 1$ we assume $a_{n} \leq 3^{2^{n}-1}$. Now, consider $n+1$. We can write:

$$
a_{n+1}=3 a_{n}^{2} \leq 3 \times\left(3^{2^{n}-1}\right)^{2}=3 \times 3^{2 \times\left(2^{n}-1\right)}=3 \times 3^{2^{n+1}-2}=3^{2^{n+1}-1} .
$$

This is exactly the induction hypothesis for $n+1$.
(c) For every $n \geq 1$, we have $2^{n}-1 \leq 2^{n}$ and therefore $3^{2^{n}-1} \leq 3^{2^{n}}$. This means that our modified hypothesis which we proved in part (b) does indeed imply what we wanted to prove in part (a).

## 3 Binary Numbers

Prove that every positive integer $n$ can be written in binary. In other words, prove that for any positive integer $n$, we can write

$$
n=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

for some $k \in \mathbb{N}$ and $c_{i} \in\{0,1\}$ for all $i \leq k$.

## Solution:

Prove by strong induction on $n$.
The key insight here is that if $n$ is divisible by 2 , then it is easy to get a bit string representation of $(n+1)$ from that of $n$. However, if $n$ is not divisible by 2 , then $(n+1)$ will be, and its binary representation will be more easily derived from that of $(n+1) / 2$. More formally:

- Base Case: $n=1$ can be written as $1 \times 2^{0}$.
- Inductive Step: Assume that the statement is true for all $1 \leq m \leq n$, where $n$ is arbitrary. Now, we need to consider $n+1$. If $n+1$ is divisible by 2 , then we can apply our inductive hypothesis to $(n+1) / 2$ and use its representation to express $n+1$ in the desired form.

$$
\begin{aligned}
(n+1) / 2 & =c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0} \\
n+1=2 \cdot(n+1) / 2 & =c_{k} \cdot 2^{k+1}+c_{k-1} \cdot 2^{k}+\cdots+c_{1} \cdot 2^{2}+c_{0} \cdot 2^{1}+0 \cdot 2^{0} .
\end{aligned}
$$

Otherwise, $n$ must be divisible by 2 and thus have $c_{0}=0$. We can obtain the representation of $n+1$ from $n$ as follows:

$$
\begin{aligned}
n & =c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+0 \cdot 2^{0} \\
n+1 & =c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+1 \cdot 2^{0}
\end{aligned}
$$

Therefore, the statement is true.
Here is another alternate solution emulating the algorithm of converting a decimal number to a binary number.

- Base Case: $n=1$ can be written as $1 \times 2^{0}$.
- Inductive Step: Assume that the statement is true for all $1 \leq m \leq n$, for arbitrary $n$. We show that the statement holds for $n+1$. Let $2^{m}$ be the largest power of 2 such that $n+1 \geq 2^{m}$. Thus, $n+1<2^{m+1}$. We examine the number $(n+1)-2^{m}$. Since $(n+1)-2^{m}<n+1$, the inductive hypothesis holds, so we have a binary representation for $(n+1)-2^{m}$. (If $(n+1)-2^{m}=0$, then we still have a binary representation, namely $0 \cdot 2^{0}$.)
Also, since $n+1<2^{m+1},(n+1)-2^{m}<2^{m}$, so the largest power of 2 in the representation of $(n+1)-2^{m}$ is $2^{m-1}$. Thus, by the inductive hypothesis,

$$
(n+1)-2^{m}=c_{m-1} \cdot 2^{m-1}+c_{m-2} \cdot 2^{m-2}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

and adding $2^{m}$ to both sides gives

$$
n+1=2^{m}+c_{m-1} \cdot 2^{m-1}+c_{m-2} \cdot 2^{m-2}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

which is a binary representation for $n+1$. Thus, the induction is complete.
Another intuition is that if $x$ has a binary representation, $2 x$ and $2 x+1$ do as well: shift the bits and possibly place 1 in the last bit. The above induction could then have proceeded from $n$ and used the binary representation of $\lfloor n / 2\rfloor$, shifting and possibly setting the first bit depending on whether $n$ is odd or even.

Note: In proofs using simple induction, we only use $P(n)$ in order to prove $P(n+1)$. Simple induction gets stuck here because in order to prove $P(n+1)$ in the inductive step, we need to assume more than just $P(n)$. This is because it is not immediately clear how to get a representation for $P(n+1)$ using just $P(n)$, particularly in the case that $n+1$ is divisible by 2 . As a result, we assume the statement to be true for all of $1,2, \ldots, n$ in order to prove it for $P(n+1)$.

## 4 Fibonacci for Home

Note 3
Recall, the Fibonacci numbers, defined recursively as
$F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-2}+F_{n-1}$.
Prove that every third Fibonacci number is even. For example, $F_{3}=2$ is even and $F_{6}=8$ is even.

## Solution:

We want to prove that for all natural numbers $k \geq 1, F_{3 k}$ is even.
Base case: For $k=1$, we can see that $F_{3}=2$ is even.
Induction hypothesis: Suppose that for an arbitrary fixed value of $k, F_{3 k}$ is even.
Inductive step: We can write

$$
F_{3 k+3}=F_{3 k+2}+F_{3 k+1}=2 F_{3 k+1}+F_{3 k} .
$$

By the induction hypothesis, we know that $F_{3 k}=2 q$ for some $q$.
This means that we have that $F_{3 k+3}=2\left(F_{3 k+1}+q\right)$, which implies that it is even. Thus, by the principles of induction we have shown that all $F_{3 k}$ are even.

