CS $70 \quad$ Discrete Mathematics and Probability Theory

 Spring 2024 Seshia, Sinclair
1 Stable Matching

Note 4
Consider the set of jobs $J=\{1,2,3\}$ and the set of candidates $C=\{A, B, C\}$ with the following preferences.

Jobs	Candidates		
1	$\mathrm{~A}>\mathrm{B}>\mathrm{C}$		
2	$\mathrm{~B}>\mathrm{A}>\mathrm{C}$		
3	$\mathrm{~A}>\mathrm{B}>\mathrm{C}$		

Candidates	Jobs		
A	$2>1>3$		
B	$1>3>2$		
C	$1>2>3$		

Run the traditional propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work.)

Solution:

The algorithm takes 5 days to produce a matching. The resulting pairing is as follows. The circles indicate the job that a candidate picked on a given day (and rejected the rest).

$$
\{(A, 2),(B, 1),(C, 3)\} .
$$

Candidate	Day 1	Day 2	Day 3	Day 4	Day 5
A	1,3	1	$1,(2)$	2	$(2$
B	2	2,3	$(3$	$1) 3$	1
C					$(3$

2 Propose-and-Reject Proofs

Note 4
Prove the following statements about the traditional propose-and-reject algorithm.
(a) In any execution of the algorithm, if a candidate receives a proposal on day i, then she receives some proposal on every day thereafter until termination.
(b) In any execution of the algorithm, if a candidate receives no proposal on day i, then she receives no proposal on any previous day $j, 1 \leq j<i$.
(c) In any execution of the algorithm, there is at least one candidate who only receives a single proposal. (Hint: use the parts above!)

Solution:

(a) The idea is to induct on the number of days passed so far.

Base case: Candidate C receives a proposal on day i
Inductive Step: Assume C receives a proposal on day $j \geq i$ from job J. We want to show she will also get a proposal on day $j+1$. There are two cases: C prefers J to all other offers, or C prefers some job J^{\prime} to J. In the first case J proposes to C on day $j+1$ and in the second J^{\prime} proposes to C on day $j+1$ so C receives at least one proposal on day $j+1$.
(b) One way is to use a proof by contradiction. Assume that a candidate receives no proposal on day i but did receive a proposal on some previous day $j, 1 \leq j<i$. By the previous part, since the candidate received a proposal on day j, she must receive at least one proposal on every day after j. But $i>j$, so the candidate must have received a proposal on day i, contradicting our original assumption that she did not.
(c) Let's say the algorithm takes k days. This means that every candidate must have received a proposal on day k. However, this also means that there is at least one candidate C who does not receive a proposal on day $k-1$-if this were not the case, the algorithm would have already terminated on day $k-1$. Then from part (b), since C did not receive a proposal on day $k-1$, she didn't receive a proposal on any day before k. Furthermore, we know she got exactly one proposal on day k, since the algorithm terminated on that day. Thus, we have that C receives exactly one proposal throughout the entire run of the algorithm.

3 Be a Judge

By stable matching instance, we mean a set of jobs and candidates and their preference lists. For each of the following statements, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:
(a) There is a stable matching instance for n jobs and n candidates for $n>1$, such that in a stable matching algorithm with jobs proposing, every job ends up with its least preferred candidate.
(b) In a stable matching instance, if job J and candidate C each put each other at the top of their respective preference lists, then J must be paired with C in every stable pairing.
(c) In a stable matching instance with at least two jobs and two candidates, if job J and candidate C each put each other at the bottom of their respective preference lists, then J cannot be paired with C in any stable pairing.
(d) For every $n>1$, there is a stable matching instance for n jobs and n candidates which has an unstable pairing where every unmatched job-candidate pair is a rogue couple or pairing.

Solution:

(a) False: If this were to occur, it would mean that at the end of the algorithm, every job would have proposed to every candidate on its list and has been rejected $n-1$ times. This also means
that every candidate got proposed to by every single one of the jobs, and at the very end must have rejected $n-1$ jobs in total (to end up with only one preferred job at the last day). We know this is impossible though, as we learned above that at least one candidate receives a single proposal. Thus, there must be at least one candidate who is not proposed to until the very last day.
(b) True: We give a simple proof by contradiction. Assume that J and C put each other at the top of their respective preference lists, but J and C are not paired with each other in some stable pairing S. Thus, S includes the pairings $\left(J, C^{\prime}\right),\left(J^{\prime}, C\right)$, for some job J^{\prime} and candidate C^{\prime}. However, J prefers C over its partner in S, since C is at the top of J 's preference list. Similarly C prefers J over her current job. Thus (J, C) form a rogue couple in S, so S is not stable. We have arrived at a contradiction that S exists where C and J are not paired.

Therefore if job J and candidate C put each other at the top of their respective preference lists, then J must be paired with C in every stable pairing.
(c) False: The key here is to realize that this is possible if job J and candidate C are at the bottom of everybody else's preference list as well. For example, a two job, two candidate instance where the first job is best for both candidates, and the first candidate is best for both jobs has its only stable pairing where the first job and first candidate are paired (by part (b)), and the second job and second candidate are paired. The second job and second candidate are each other's least preferred option.
(d) True: The key idea to this solution is that we want a set of preferences for which J_{i} and C_{i} like each other the least and make a pairing J_{i} and C_{i} together. In this matching M each unmatched couple is a rogue couple. In particular, an instance can be constructed by forming preferences where job i 's (candidate i 's) least favorite candidate is candidate i (job i and an arbitrary ordering on all the others. Thus, for any job i and candidate j, where $i \neq j$, then job i prefers candidate j to i (its partner in M) and candidate j prefers job i to j (its partner in M.) That, is every pair i and j is a rogue couple.
An example for two jobs and two candidates, is the instance:

Jobs		Candidates	
1	A B	A	12
2	B A	B	21

The pairing $P=\{(A, 2),(B, 1)\}$ is the pairing where each pair of jobs and candidates that are not in $P,(A, 1)$ and $(B, 2)$, are rogue couples.

4 Stable Matching III

(a) True or False?
(i) If a candidate accidentally rejects a job she prefers on a given day, then the algorithm still always ends with a matching.
(ii) The Propose-and-Reject Algorithm never produces a candidate-optimal matching.
(iii) If the same job is last on the preference list of every candidate, the job must end up with its least preferred candidate.
(b) As you've seen from lecture, the jobs-proposing Propose-and-Reject Algorithm produces an employer-optimal stable matching. Let's see if the candidate have any way of improving their standing. Suppose exactly one of the candidates has the power to arbitrarily reject one proposal, regardless of which job she has on her string (if any). Construct an example that illustrates the following: for any $n \geq 2$, there exists a stable matching instance for which using this power helps every candidate, i.e. every candidate gets a better job than she would have gotten under the jobs-proposing Propose-and-Reject Algorithm.

Solution:

(a) (i) False, consider the case:

Jobs		Candidates	
1	A B	A	12
2	B A	B	21

Using SMA, the matching will be: $(A, 1),(B, 2)$. If candidate A rejects job 1 despite having no other jobs on her string, job 1 will propose to candidate B and also get rejected. This leaves both candidate A and job 1 partnerless. In this case, the accidental rejection prevents a matching from being produced at all.
(ii) False. Suppose that all jobs have a different first choice. Also supposed that the job proposing is each candidate's first choice. In this case, the algorithm would end after the first day with both jobs and candidates ending with their top pick. In this case, the result is candidate-optimal.
(iii) False, consider the following case where jobs are numbers and candidates are letters:

Jobs			Candidates		
1	A	B	A	2	1
2	B	A	B	2	1

Job 1 is last on every candidate's list, however, $\{(A, 1),(B, 2)\}$ is a stable pairing where job 1 got its top choice candidate.
(b) Without loss of generality, assume that candidate 1 is the candidate with this special power. Now, assume the preference lists are ordered as follows:

Job	Preferences	Candidate	Preferences
1	$1>2>\cdots>n-1>n$	1	$n>n-1>\cdots>2>1$
2	$2>3>\cdots>n-1>n>1$	2	$1>n>n-1>\cdots>2$
3	$3>4>\cdots>n>1>2$	3	$2>1>n>n-1>\cdots>3$
	\cdots		\cdots
n	$n>1>2>\cdots>n-1$	n	$n-1>n-2>\cdots>1>n$

If the Propose-and-Reject Algorithm was run with these preference lists, then each candidate would be stuck with her least-preferred job. However, let's say candidate 1 rejects job 1 on
the first day, even though she has nobody on her string. Then, job 1 will be forced to propose to its second option, candidate 2, and she will accept because the job is her first choice. Now, job 2 has no partner and will propose to candidate 3 , who will accept, leaving job 3 without a partner. This process continues until job n proposes to candidate 1. One rejection has led all candidates to get their best choice instead of their worst choice!

