CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 2A

| RSA Intro

Note 7 Fermat’s Little Theorem: For all primes p, aP~ =1 (mod p)ifa+#0,and a” =a (mod p) for
all a.

RSA Scheme: A cryptographic scheme that allows communication over insecure channels via
public-key encryption. Alice encrypts her message x with Bob’s public key, ensuring that only
Bob (with his private key) can decrypt it, which prevents Eve from eavesdropping.

i Public key: i Private key:
| (N = pg.e) | primes p, g
3 d=e! (mod (p—1)(¢—1))
Alice l Eve 1 Bob
x (mod N) | | x =x (mod N)
E(x) l f 3 D(y)
! y=x° (mod N) !
x¢ (mod N) : : » x¢ (mod N)

(a) Evaluate 3123%° (mod 31).
(b) Suppose we would like to evaluate 141'%! (mod 187).

(i) First, evaluate 1411 (mod 11) and 141'%! (mod 17) without simplifying the base (i.e.
only simplify the exponent). Use the results of those computations to evaluate 141!
(mod 187).

(ii) Alternatively we can evaluate 141'6! (mod 187) by thinking of the computation as an
instance of the RSA equation x*/ = x (mod pq). What are p, ¢, e, and d? What is the

final result of the computation? (Hint: We know that 187 =11 x 17 and 161 =23 x 7.)

Solution:

(a) Since 31 is prime, we know that @®* = 1 (mod 31) for any nonzero a, by FLT. In particular,
we have
31230 =230=1 (mod 31).

CS 70, Summer 2025, DIS 2A

—_

https://www.eecs70.org/assets/pdf/notes/n7.pdf

(® @
141100 = 141 (141" = 1411 =141 (mod 11),
141100 = 141 (141" = 141- 1 =141 (mod 17).
Thus, by CRT, we conclude that: 141'6! = 141 (mod 187).

(i1) This is an instantiation of the RSA scheme, with p=11,g=17,e="7,and d = 23. (p
and ¢ could be swapped here, and similarly with e and d.)

In particular, Alice is attempting to send the message x = 141, and the encryption is x¢
(mod pq), or in this case 1417 (mod 187).

When Bob decrypts the message, he computes x** (mod pgq), or in this case 141723 =
141'6" (mod 187).

Since we know that this scheme will always recover the original message, the resulting
quantity must be 141 (mod 187).

2 RSA Warm-Up

Note 7 Consider an RSA scheme with modulus N = pg, where p and ¢ are distinct prime numbers larger
than 3.

(a) What is wrong with using the exponent e = 2 in an RSA public key?
(b) Now suppose that p =5, g = 17, and e = 3. What is the public key?
(c) What is the private key?

(d) Alice wants to send a message x = 10 to Bob. What is the encrypted message E (x) she sends
using the public key?

(e) Suppose Bob receives the message y = 19 from Alice. What equation would he use to decrypt
the message? What is the decrypted message?

(f) In RSA, we rely on the hardness of two different problems in order to guarantee the security
of the scheme. Which two problems are these? If their hardness is not guaranteed, what goes
wrong?

Solution:

(a) To find the private key d from the public key (N,e), we need ged(e,(p—1)(¢g—1)) = 1.
However, (p — 1)(g — 1) is necessarily even since p,q are distinct odd primes, so if e = 2,
ged(e,(p—1)(g—1)) =2, and a private key does not exist. (Note that this shows that e
should more generally never be even.)

(b) N=p-gq =85 and e = 3 are displayed publicly. Note that in practice, p and g should be
much larger (512-bit) numbers. We are only choosing small numbers here to allow manual
computation.

CS 70, Summer 2025, DIS 2A 2

https://www.eecs70.org/assets/pdf/notes/n7.pdf

(c) We must have ed = 3d =1 (mod 64), so d = 43. Reminder: we would do this by using

extended ged with x = 64 and y = 3. We get gcd(x,y) =1 =ax+by,anda=1,b = —21.

(d) We have E(x) = x> (mod 85), where E(x) is the encryption function. 103 =65 (mod 85),

so E(x) = 65.

(e) We have D(y) = y* (mod 85), where D(y) is the decryption function, the inverse of E (x).

x=19* (mod 85)

From CRT we know that for coprime numbers p and ¢ if

x=a (mod p)
x=b (mod q)
then
x=uaqq +bpp; (mod pq)
where p; = p~! (mod ¢) and ¢g; = ¢~ (mod p).

In our case we have p =5 and g = 17. So

and

x=19* (mod 17)

x=(2)" (mod 17)

x= (291923 (mod 17)

x=(—1'-8 (mod 17)

x=8 (mod 17)
Hence

x=a=4 (mod5) x=b=8 (mod 17)

and

pr=p ' (mod17)=5" (mod 17)=7
g1=¢q " (mod5)=17"" (mod5)=3

CS 70, Summer 2025, DIS 2A 3

Note 7

So we have

x=aqq, +bppy (mod pq)
x=4-17-348-5-7 (mod 85)
x=4-17-34280 (mod 85)
x=17-(12)+280 (mod 85)
x=17-(104+2)+280 (mod 85)
x=34+25 (mod 85)

x=59 (mod 85)

so D(y) = 59.
(f) RSA relies on the hardness of the following two problems:

1. Factorizing large numbers: We assume that it is very hard to find the prime factoriza-
tion of very large numbers, especially when they are semiprimes (i.e. they have exactly
two prime factors).

2. Finding the discrete logarithm: We assume that is is also very hard to find the discrete
logarithm of a number. That is, when working under mod N, we assume that it is hard
to find x (mod N), given e and x¢ (mod N).

If it 1s actually easy to factorize large numbers, any attacker can find p and g from N = pq in
the public key. With this information, the attacker can compute d = e~! (mod (p —1)(q —
1)), since they now know all the quantities on the RHS. At this point, the attacker now knows
all of the private key information, so the security of the scheme is compromised.

If it is actually easy to find the discrete logarithm of a number, then any attacker can compute
x when given y = x° (mod N), since N and e are part of the public key. This means that the
attacker now gains knowledge of the original message we were trying to hide, so the security
of the scheme is compromised.

As a note here, we don’t actually know whether these problems are hard to solve—however,
we have not yet found any polynomial-time algorithms for either of these problems, despite
many decades of mathematicians and computer scientists attempting to find them. This leads
us to suspect that the problems are indeed hard to solve, which is why so much of cryptogra-
phy is built around these concepts.

3 RSA with Multiple Keys

Members of a secret society know a secret word. They transmit this secret word x between each
other many times, each time encrypting it with the RSA method. Eve, who is listening to all
of their communications, notices that in all of the public keys they use, the exponent e is the
same. Therefore the public keys used look like (Ny,e),. .., (Ni,e) where no two N;’s are the same.
Assume that the message is x such that 0 < x < N; for every i.

CS 70, Summer 2025, DIS 2A 4

https://www.eecs70.org/assets/pdf/notes/n7.pdf

Note 7

Further, in all of the subparts, you may assume that Eve knows the details of the modified RSA
schemes (i.e. Eve knows the format of the N;’s, but not the specific values used to compute the

Nl"S).

(a)

(b)

(©

Suppose Eve sees the public keys (p1¢1,7) and (p1¢2,7) as well as the corresponding trans-
missions. Can Eve use this knowledge to break the encryption? If so, how? Assume that Eve
cannot compute prime factors efficiently. Think of p;,q1,g2 as massive 1024-bit numbers.
Assume p1,q1,g> are all distinct and are valid primes for RSA to be carried out.

The secret society has wised up to Eve and changed their choices of N, in addition to chang-
ing their word x. Now, Eve sees keys (p191,3), (p292,3), and (p3g3,3) along with their
transmissions. Argue why Eve cannot break the encryption in the same way as above. As-
sume p1, p2, P3,41,92,q3 are all distinct and are valid primes for RSA to be carried out.

Let’s say the secret x was not changed (e = 3), so they used the same public keys as before,
but did not transmit different messages. How can Eve figure out x?

Solution:

(a)

(b)

(©)

Normally, the difficulty of cracking RSA hinges upon the believed difficulty of factoring
large numbers. If Eve were given just p;qi, she would (probably) not be able to figure out
the factors.

However, Eve has access to two public keys, so yes, she will be able to figure it out. Note that
gcd(p1g1,p1g2) = pi1- Taking GCDs is actually an efficient operation thanks to the Euclidean
Algorithm. Therefore, she can figure out the value of p;, and from there figure out the value
of g1 and ¢, since she has p1q; and p;g».

Since none of the N’s have common factors, she cannot find a GCD to divide out of any of
the Ns. Hence the approach above does not work.

Eve observes x> (mod Nj), x> (mod N),x* (mod N3). Since all Ni,N,, N3 are pairwise rel-
atively prime, Eve can use the Chinese Remainder Theorem to figure out X (mod NiN>N3).
However, once she gets that, she knows x, since x < N, x < N, and x < N3, which implies
x> < N{N>N3, so she can directly take the cube root of the result from CRT. Uh oh!

4 RSA for Concert Tickets

Alice wants to tell Bob her concert ticket number, m, which is an integer between 0 and 100
inclusive. She wants to tell Bob over an insecure channel that Eve can listen in on, but Alice does
not want Eve to know her ticket number.

(a)

(b)

Bob announces his public key (N = pg,e), where N is large (512 bits). Alice encrypts her
message using RSA. Eve sees the encrypted message, and figures out what Alice’s ticket
number is. How did she do it?

Alice decides to be a bit more elaborate. She picks a random number r that is 256 bits long,
so that it is too hard to guess. She encrypts that and sends it to Bob, and also computes rm,

CS 70, Summer 2025, DIS 2A 5

https://www.eecs70.org/assets/pdf/notes/n7.pdf

encrypts that, and sends it to Bob. Eve is aware of what Alice did, but does not know the
value of ». How can she figure out m? (You may assume that r is coprime to N.)

Solution:

(a) There are only 101 possible values for Alice’s ticket number, so Eve can try encrypting all
101 values with Bob’s public key and find out which one matches the one Alice sent.

(b) Alice sends x = r¢ (mod pq), as well as y = (rm)¢ = r’m® = xm® (mod pq). We can find
x~! (mod N) using the Extended Euclidean Algorithm, and multiplying this value by y gives
us m¢ (mod N). Now we proceed as in the previous part to find m.

Another approach is to compute xm® for all 101 values of m, and compare the value to y,
checking which one matches.

CS 70, Summer 2025, DIS 2A 6

	RSA Intro
	RSA Warm-Up
	RSA with Multiple Keys
	RSA for Concert Tickets

