
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair DIS 2B

1 Short Answers

Note 5 In each part below, provide the number/equation and brief justification.

(a) A connected planar simple graph has 5 more edges than it has vertices. How many faces does
it have?

(b) How many edges need to be removed from a 3-dimensional hypercube to get a tree?

(c) The Euler’s formula v− e+ f = 2 requires the planar graph to be connected. What is the
analogous formula for planar graphs wth k connected components?

Solution:

(a) 7.
Use Euler’s formula v+ f = e+2.

(b) 5.
The 3-dimensional hypercube has 3(23)/2 = 12 edges and 23 = 8 vertices. A tree on 8 vertices
has 7 edges, so one needs to remove 5 edges.

(c) Let vi,ei, fi be the number of vertices, edges, and faces respectively for the ith connected
component. Let V,E,F be the analogous quantities for the entire graph. For each connected
component i, Euler’s equation gives vi − ei + fi = 2. Summing over this for all i, we get

k

∑
i=1

(vi − ei + fi) = 2k

When we add up the vertices and edges, the total count doesn’t change. Only the number of
faces changes when we consider multiple connected components. When we ’combine’ two
connected components (aka consider them to be the same graph), they end up sharing the
’infinite’ face, so if we were to add the number of faces, we have to subtract 1 from our count.
Thus,

V −E +
k

∑
i=1

fi = 2k

When we combine together k components, we end up overcounting the infinite face k − 1
times, so F = ∑i fi − (k−1) Equivalently,

V −E +F +(k−1) = 2k

, or V −E +F = k+1.
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2 Always, Sometimes, or Never

Note 5 In each part below, you are given some information about a graph G. Using only the information
in the current part, say whether G will always be planar, always be non-planar, or could be either.
If you think it is always planar or always non-planar, prove it. If you think it could be either, give
a planar example and a non-planar example.

(a) G can be vertex-colored with 4 colors.

(b) G requires 7 colors to be vertex-colored.

(c) e ≤ 3v−6, where e is the number of edges of G and v is the number of vertices of G.

(d) G is connected, and each vertex in G has degree at most 2.

(e) Each vertex in G has degree at most 2.

Solution:

(a) Either planar or non-planar. By the 4-color theorem, any planar graph can provide the planar
example. The easiest non-planar example is K3,3, which can be 2-colored because it is bipartite.
(Certainly, any graph which can be colored using only 2 colors can also be colored using 4
colors.)

(b) Always non-planar. The 4-color theorem tells us that if a graph is planar, it can be colored
using only 4 colors. The contrapositive of this is that if a graph requires more than 4 colors to
vertex-color, it must be non-planar. (Using the 5- or 6-color theorem would also work.)

(c) Either planar or non-planar. From the notes, we know that every planar graph follows this
formula, so any planar graph is a valid planar example. The easiest non-planar example is
again K3,3, which has e = 9 and v = 6, meaning our formula becomes 9 ≤ 3(6)− 6 = 12,
which is certainly true.

(d) Always planar. There are two cases to deal with here: either G is a tree, or G is not a tree and
so contains at least one cycle. In the former case, we’re immediately done, since all trees are
planar. In the latter case, consider any cycle in G. We know that every vertex in that cycle is
adjacent to the vertex to its left in the cycle and to the vertex to its right in the cycle. But we
also know that no vertex can be connected to more than two other vertices, so the cycle isn’t
connected to anything else. But G is a connected graph, so we must have that G is just a single
large cycle. And we can certainly draw a simple cycle on a plane without crossing any edges,
so even in this case G is still planar.

Alternatively, we can use Kuratowski’s theorem; since each vertex has a degree of at most 2, it
is impossible for G to contain K5 or K3,3. This means that G must be planar.

(e) Always planar. Each of G’s connected components is connected and has no vertex of degree
more than 2, so by the previous part, each of them must be planar. Thus, each of G’s connected
components must be planar, so G itself must be planar.
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Alternatively, we can follow the same procedure as the previous alternate solution; each vertex
still has a degree of at most 2, so it is impossible for G to contain K5 or K3,3. This means that
G must be planar.

3 Graph Coloring

Note 5 Prove that a graph with maximum degree at most k is (k+1)-colorable.

Solution:

The natural way to try to prove this theorem is to use induction on the graph’s maximum degree,
k. Unfortunately, this approach is extremely difficult because covering all possible types of graphs
when maximum degree changes requires extreme caution. You might be envisioning a certain
graph as you write your proof, but your argument will likely not generalize. In graphs, typical
good choices for the induction parameter are n, the number of nodes, or e, the number of edges.
We typically shy away from inducting on degree.

We use induction on the number of vertices in the graph, which we denote by n. Let P(n) be the
proposition that an n-vertex graph with maximum degree at most k is (k+1)-colorable.

Base Case n = 1: A 1-vertex graph has maximum degree 0 and is 1-colorable, so P(1) is true.

Inductive Step: Now assume that P(n) is true, and let G be an (n+1)-vertex graph with maximum
degree at most k. Remove a vertex v (and all edges incident to it), leaving an n-vertex subgraph,H.
The maximum degree of H is at most k, and so H is (k+ 1)-colorable by our assumption P(n).
Now add back vertex v. We can assign v a color (from the set of k+1 colors) that is different from
all its adjacent vertices, since there are at most k vertices adjacent to v and so at least one of the
k+1 colors is still available. Therefore, G is (k+1)-colorable. This completes the inductive step,
and the theorem follows by induction.

4 Hypercubes

Note 5 The vertex set of the n-dimensional hypercube G = (V,E) is given by V = {0,1}n (recall that
{0,1}n denotes the set of all n-bit strings). There is an edge between two vertices x and y if and
only if x and y differ in exactly one bit position.

(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit
strings.

(b) Show that the edges of an n-dimensional hypercube can be colored using n colors so that no
pair of edges sharing a common vertex have the same color.

(c) Show that for any n ≥ 1, the n-dimensional hypercube is bipartite.

Solution:
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(a) The three hypercubes are a line, a square, and a cube, respectively. See also note 5 for pictures.

(b) Consider each edge that changes the ith bit for some i ≤ n. Every vertex touches exactly one
of these edges, because there is exactly one way to change the ith bit in any bitstring. Coloring
each of these edges color i ensures that each vertex will then be adjacent to n differently colored
edges, since there are n different bits to change, and no two edges representing bit changes on
different bits have the same color.

An example for the three dimensional case is shown below (red is the first bit, blue is the
second bit, and green is the third bit):

000 001

100
101

011
010

111110

Alternate solution (using induction):

In the base case of n = 1, the hypercube of only one line can be edge colored with 1 color.
Next, suppose that the n dimensional hypercube can be colored with n colors. Recall that the
n+ 1 dimensional hypercube is composed of two n dimensional hypercubes; each of these
hypercubes can be colored with n colors by the inductive hypothesis.

We can connect the two n dimensional hypercubes with edges colored with a different color;
this will be our (n+ 1)th color. Since these new edges will always be between distinct pairs
of vertices, one from each subcube, none of these new edges will share a vertex, giving a valid
coloring of the n+1 dimensional hypercube with n+1 colors.

(c) Consider the vertices with an even number of 0 bits and the vertices with an odd number of 0
bits. Each vertex with an even number of 0 bits is adjacent only to vertices with an odd number
of 0 bits, since each edge represents a single bit change (either a 0 bit is added by flipping a
1 bit, or a 0 bit is removed by flipping a 0 bit). Let L be the set of the vertices with an even
number of 0 bits and let R be the vertices with an odd number of 0 bits, then no two adjacent
vertices will belong to the same set.

An example for the three dimensional case is shown below (L are blue vertices, and R are red
vertices):
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Alternate solution (using induction and coloring):

It may be simpler to that a graph being 2-colorable is the same as being bipartite. Now, the
argument is easier to state. First the base case is a hypercube with two vertices which is clearly
two-colorable. Then notice, switching the colors in a two-coloring is still valid as if endpoints
are differently colored, switching leaves them differently colored. Now, recursively one two
colors the two subcubes the same, and then switches the colors in one subcube. The internal to
subcube edges are fine by induction. The edges across are fine as the corresponding vertices
are differently colored due to the switching.
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