
CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 2B

1 Polynomials Intro
Note 8 Polynomial: f (x) = a0+a1x+a2x2+ · · ·+anxn; in terms of roots, f (x) = a(x−r1)(x−r2) · · ·(x−

rk)

Degree of a polynomial: the highest exponent in the polynomial

Galois Field: denoted as GF(p), it’s basically just a fancy way of saying that we’re working
modulo p, for a prime p

Properties (true over R and also over GF(p)):

• Polynomial of degree d has at most d roots.

• Exactly one polynomial of degree at most d passes through d +1 points.

Lagrange Interpolation: Given d +1 points (x1,y1), (x2,y2), . . . , (xd+1,yd+1), we define

∆i(x) =
∏ j ̸=i(x− x j)

∏ j ̸=i(xi − x j)
.

The unique polynomial through all points is f (x) = ∑
d+1
i=1 yi ·∆i(x)

Secret Sharing: We make use of the fact that there is a unique polynomial of degree d passing
through a given set of d+1 points. This means that if we require k people to come together in order
to find a secret, we should use a polynomial of degree k−1, and give each person one point. There
are more complicated schemes if there are more conditions, but they all use the same concept.

(a) Consider the ∆i(x) polynomials in Lagrange interpolation. What is the value of ∆i(x) for
x = xi, and what is its value for x = x j, where j ̸= i? How is this similar to the process of
computing a solution with CRT?

(b) If we perform Lagrange interpolation over GF(p) instead of over R, what is different?

Solution:

(a) Here, we have ∆i(xi) = 1, whereas ∆i(x j) = 0 for i ̸= j.

This is very similar to how we computed the bi’s in CRT. Recall how we defined bi such that
bi ≡ 1 (mod mi), but bi ≡ 0 (mod m j) for j ̸= i. The reason why we defined the bi’s this
way is so that we can compute a solution to exactly one of the equations in the system, while
not affecting any of the others.

The ∆i’s here serve the exact same purpose, as a polynomial that passes through exactly one
of the points, and does not affect the value at any of the other points.
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(b) The only difference is that we no longer have any division; we use the modular inverse
instead. The definition of ∆i(x) becomes

∆i(x) =

(
∏
j ̸=i

(x− x j)

)(
∏
j ̸=i

(xi − x j)

)−1

(mod p).

2 Polynomial Practice
Note 8 (a) If f and g are non-zero real polynomials, how many real roots do the following polynomials

have at least? How many can they have at most? (Your answer may depend on the degrees
of f and g.)

(i) f +g

(ii) f ·g

(iii) f/g, assuming that f/g is a polynomial

(b) Now let f and g be polynomials over GF(p).

(i) We say a polynomial f = 0 if ∀x, f (x) = 0. Show that if f ·g = 0, it is not always true
that either f = 0 or g = 0.

(ii) How many f of degree exactly d < p are there such that f (0) = a for some fixed a ∈
{0,1, . . . , p−1}?

(c) Find a polynomial f over GF(5) that satisfies f (0) = 1, f (2) = 2, f (4) = 0. How many such
polynomials of degree at most 4 are there?

Solution:

(a) (i) It could be that f +g has no roots at all (example: f (x) = 2x2 −1 and g(x) =−x2 +2),
so the minimum number is 0. However, if the highest degree of f + g is odd, then it
has to cross the x-axis at least once, meaning that the minimum number of roots for
odd degree polynomials is 1. On the other hand, f + g is a polynomial of degree at
most m = max(deg f ,degg), so it can have at most m roots. The one exception to this
expression is if f =−g. In that case, f +g= 0, so the polynomial has an infinite number
of roots!

(ii) A product is zero if and only if one of its factors vanishes. So if f (x) · g(x) = 0 for
some x, then either x is a root of f or it is a root of g, which gives a maximum of
deg f +degg possibilities. Again, there may not be any roots if neither f nor g have any
roots (example: f (x) = g(x) = x2 +1).

(iii) If f/g is a polynomial, then it must be of degree d = deg f − degg and so there are
at most d roots. Once more, it may not have any roots, e.g. if f (x) = g(x)(x2 + 1),
f/g = x2 +1 has no root.
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(b) (i) There are a couple counterexamples:

Example 1: xp−1 −1 and x are both non-zero polynomials on GF(p) for any p. x has
a root at 0, and by FLT, xp−1 − 1 has a root at all non-zero points in GF(p). So, their
product xp − x must have a zero on all points in GF(p).

Example 2: To satisfy f · g = 0, all we need is (∀x ∈ S, f (x) = 0∨ g(x) = 0) where
S = {0, . . . , p−1}. We may see that this is not equivalent to (∀x ∈ S, f (x) = 0))∨ (∀x ∈
S,g(x) = 0).

To construct a concrete example, let p = 2 and we enforce f (0) = 1, f (1) = 0 (e.g.
f (x) = 1− x), and g(0) = 0,g(1) = 1 (e.g. g(x) = x). Then f ·g = 0 but neither f nor g
is the zero polynomial.

(ii) We know that in general each of the d + 1 coefficients of f (x) = ∑
d
k=0 ckxk can take

any of p values. However, the conditions f (0) and deg f = d impose constraints on the
constant coefficient f (0) = c0 = a and the top coefficient xd ̸= 0. Hence we are left with
(p−1) · pd−1 possibilities.

(c) A polynomial of degree ≤ 4 is determined by 5 points (xi,yi). We have assigned three, which
leaves 52 = 25 possibilities. To find a specific polynomial, we use Lagrange interpolation:

∆0(x) = 2(x−2)(x−4) ∆2(x) = x(x−4) ∆4(x) = 2x(x−2),

and so f (x) = ∆0(x)+2∆2(x) = 4x2 +1.

3 Lagrange Interpolation in Finite Fields
Note 8 In this problem, we will break down the terms of Lagrange interpolation by working through an

example, where we want to find a unique polynomial p(x) of degree at most 2 that passes through
points (−1,3), (0,1), and (1,2) in modulo 5 arithmetic.

(a) First, assume we have polynomials p−1(x), p0(x), and p1(x) satisfying:

p−1(0)≡ p−1(1)≡ 0 (mod 5); p−1(−1)≡ 1 (mod 5)
p0(−1)≡ p0(1)≡ 0 (mod 5); p0(0)≡ 1 (mod 5)
p1(−1)≡ p1(0)≡ 0 (mod 5); p1(1)≡ 1 (mod 5)

Construct p(x) using a linear combination of p−1(x), p0(x), and p1(x).

(b) Find p−1(x). In other words, find a degree 2 polynomial that has roots at x = 0 and x = 1 and
evaluates to 1 at x =−1 (all in modulo 5).

(c) Find p0(x).

(d) Find p1(x).

(e) Now, lets put it all together! Create a suitable polynomial p(x) by using the linear combina-
tion and polynomials constructed above.
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Solution:

(a) We know that each respective pn(x) will be 1 when x = n, and 0 at the two other relevant
points. Thus, p(x) can be created by a linear combination of pn(x)’s multiplied by the re-
quired y value at x = n. Giving p(x) = 3p−1(x)+1p0(x)+2p1(x)

(b) We see

p−1(x)≡ (x−0)(x−1)
(
(−1−0)(−1−1)

)−1

≡ (2)−1x(x−1) (mod 5)
≡ 3x(x−1) (mod 5).

(c) We see

p0(x)≡ (x+1)(x−1)
(
(0+1)(0−1)

)−1

≡ (−1)−1(x−1)(x+1) (mod 5)
≡ 4(x−1)(x+1) (mod 5).

(d) We see

p1(x)≡ (x+1)(x−0)
(
(1+1)(1−0)

)−1

≡ (2)−1x(x+1) (mod 5)
≡ 3x(x+1) (mod 5).

(e) Putting everything together,

p(x) = 3p−1(x)+1p0(x)+2p1(x)

= 9x(x−1)+4(x−1)(x+1)+6x(x+1)

≡ 4x2 −3x−4 (mod 5)

≡ 4x2 +2x+1 (mod 5).

4 Secrets in the United Nations
Note 8 A vault in the United Nations can be opened with a secret combination s∈Z. In only two situations

should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries,
plus the U.N. Secretary-General, must agree.

(a) Propose a scheme that gives private information to the Secretary-General and all 193 member
countries so that the secret combination s can only be recovered under either one of the two
specified conditions.

(b) The General Assembly of the UN decides to add an extra level of security: each of the 193
member countries has a delegation of 12 representatives, all of whom must agree in order for
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that country to help open the vault. Propose a scheme that adds this new feature. The scheme
should give private information to the Secretary-General and to each representative of each
country.

Solution:

(a) Create a polynomial of degree 192 and give each country one point. Give the Secretary
General 193− 55 = 138 distinct points, so that if she collaborates with 55 countries, they
will have a total of 193 points and can reconstruct the polynomial. Without the Secretary-
General, the polynomial can still be recovered if all 193 countries come together. (We do
all our work in GF(p) for some large prime p ≥ 1+ 193+ 138, since we need to distribute
a point to each of the countries, 138 points to the Secretary General, and one point for the
secret).

Alternatively, we could have one scheme for condition (i) and another for (ii). The first
condition is the secret-sharing setup we discussed in the notes, so a single polynomial of
degree 192 suffices, with each country receiving one point, and evaluation at zero returning
the combination s. For the second condition, create a polynomial f of degree 1 with f (0) = s,
and give f (1) to the Secretary-General. Now create a second polynomial g of degree 54, with
g(0) = f (2), and give one point of g to each country. This way any 55 countries can recover
g(0) = f (2), and then can consult with the Secretary-General to recover s = f (0) from f (1)
and f (2).

(b) We’ll layer an additional round of secret-sharing onto the scheme from part (a). If ti is the
key given to the ith country, produce a degree-11 polynomial fi so that fi(0) = ti, and give
one point of fi to each of the 12 delegates. Do the same for each country (using different fi
each time, of course).
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