## 1 Party Tricks

Note 6 You are at a party celebrating your completion of the CS 70 midterm. Show off your modular arithmetic skills and impress your friends by quickly figuring out the last digit(s) of each of the following numbers:
(a) Find the last digit of $11^{3142}$.
(b) Find the last digit of $9^{9999}$.
(c) Find the last digit of $3^{641}$.

## Solution:

(a) First, we notice that $11 \equiv 1(\bmod 10)$. So $11^{3142} \equiv 1^{3142} \equiv 1(\bmod 10)$, so the last digit is a 1.
(b) 9 is its own multiplicative inverse $\bmod 10$, so $9^{2} \equiv 1(\bmod 10)$. Then

$$
9^{9999}=9^{2(4999)} \cdot 9 \equiv 1^{4999} \cdot 9 \equiv 9 \quad(\bmod 10),
$$

so the last digit is a 9 .
Another solution: We know $9 \equiv-1(\bmod 10)$, so

$$
9^{9999} \equiv(-1)^{9999} \equiv-1 \equiv 9 \quad(\bmod 10) .
$$

You could have also used this to say

$$
9^{9999} \equiv(-1)^{9998} \cdot 9 \equiv 9 \quad(\bmod 10) .
$$

(c) Notice that $3^{4}=9^{2}$ so using that $9^{2}=81 \equiv 1(\bmod 10)$, we have $3^{4} \equiv 1(\bmod 10)$. We also have that $641=160 \cdot 4+1$, so

$$
3^{641} \equiv 3^{4(160)} \cdot 3 \equiv 1^{160} \cdot 3 \equiv 3 \quad(\bmod 10)
$$

making the last digit a 3 .

## 2 Modular Potpourri

Note 6
Prove or disprove the following statements:
(a) There exists some $x \in \mathbb{Z}$ such that $x \equiv 3(\bmod 16)$ and $x \equiv 4(\bmod 6)$.
(b) $2 x \equiv 4(\bmod 12) \Longleftrightarrow x \equiv 2(\bmod 12)$.
(c) $2 x \equiv 4(\bmod 12) \Longleftrightarrow x \equiv 2(\bmod 6)$.

## Solution:

(a) Impossible.

Suppose there exists an $x$ satisfying both equations.
From $x \equiv 3(\bmod 16)$, we have $x=3+16 k$ for some integer $k$. This implies $x \equiv 1(\bmod 2)$.
From $x \equiv 4(\bmod 6)$, we have $x=4+6 l$ for some integer $l$. This implies $x \equiv 0(\bmod 2)$.
Now we have $x \equiv 1(\bmod 2)$ and $x \equiv 0(\bmod 2)$. Contradiction.
(b) False, consider $x \equiv 8(\bmod 12)$.

The reason we can't eliminate the 2 in the first equation to get the second equation is because 2 does not have a multiplicative inverse modulo 12, as 2 and 12 are not coprime.
(c) True. We can write $2 x \equiv 4(\bmod 12)$ as $2 x=4+12 k$ for some $k \in \mathbb{Z}$. Dividing by 2 , we have $x=2+6 k$ for the same $k \in \mathbb{Z}$. This is equivalent to saying $x \equiv 2(\bmod 6)$.

## 3 Modular Inverses

Note 6 Recall the definition of inverses from lecture: let $a, m \in \mathbb{Z}$ and $m>0$; if $x \in \mathbb{Z}$ satisfies $a x \equiv 1$ $(\bmod m)$, then we say $x$ is an inverse of $a$ modulo $m$.

Now, we will investigate the existence and uniqueness of inverses.
(a) Is 3 an inverse of 5 modulo 10 ?
(b) Is 3 an inverse of 5 modulo 14 ?
(c) For all $n \in \mathbb{N}$, is $3+14 n$ an inverse of 5 modulo 14 ?
(d) Does 4 have an inverse modulo 8 ?
(e) Suppose $x, x^{\prime} \in \mathbb{Z}$ are both inverses of $a$ modulo $m$. Is it possible that $x \not \equiv x^{\prime}(\bmod m)$ ?

## Solution:

(a) No, because $3 \cdot 5=15 \equiv 5(\bmod 10)$.
(b) Yes, because $3 \cdot 5=15 \equiv 1(\bmod 14)$.
(c) Yes, because $(3+14 n) \cdot 5=15+14 \cdot 5 n \equiv 15 \equiv 1(\bmod 14)$.
(d) No. For contradiction, assume $x \in \mathbb{Z}$ is an inverse of 4 modulo 8 . Then $4 x \equiv 1(\bmod 8)$. Then $8 \mid 4 x-1$, which is impossible.
(e) No. We have $x a \equiv x^{\prime} a \equiv 1(\bmod m)$. So

$$
x a-x^{\prime} a=a\left(x-x^{\prime}\right) \equiv 0 \quad(\bmod m) .
$$

Multiply both sides by $x$, we get

$$
\begin{gathered}
x a\left(x-x^{\prime}\right) \equiv 0 \cdot x \quad(\bmod m) \\
\Longrightarrow x-x^{\prime} \equiv 0 \quad(\bmod m) \\
\Longrightarrow x \equiv x^{\prime} \quad(\bmod m)
\end{gathered}
$$

## 4 Fibonacci GCD

Note 6
The Fibonacci sequence is given by $F_{n}=F_{n-1}+F_{n-2}$, where $F_{0}=0$ and $F_{1}=1$. Prove that, for all $n \geq 1, \operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$.

## Solution:

Proceed by induction.
Base Case: We have $\operatorname{gcd}\left(F_{1}, F_{0}\right)=\operatorname{gcd}(1,0)=1$, which is true.
Inductive Hypothesis: Assume we have $\operatorname{gcd}\left(F_{k}, F_{k-1}\right)=1$ for some $k \geq 1$.
Inductive Step: Now we need to show that $\operatorname{gcd}\left(F_{k+1}, F_{k}\right)=1$ as well.
We can show that:

$$
\operatorname{gcd}\left(F_{k+1}, F_{k}\right)=\operatorname{gcd}\left(F_{k}+F_{k-1}, F_{k}\right)=\operatorname{gcd}\left(F_{k}, F_{k-1}\right)=1 .
$$

Note that the second expression comes from the definition of Fibonacci numbers. The last expression comes from Euclid's GCD algorithm, in which $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$, since

$$
F_{k}+F_{k-1} \equiv F_{k-1} \quad\left(\bmod F_{k}\right)
$$

Therefore the statement is also true for $n=k+1$.
By the rule of induction, we can conclude that $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$ for all $n \geq 1$, where $F_{0}=0$ and $F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$.

