
CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 3C

1 Countability Intro
Note 11 A function f : A→ B maps elements from set A to set B.

f is injective if it maps distinct elements to distinct elements, and surjective if every element in B
is mapped to by some element in A. If f is both injective and surjective, it is bijective, and the sets
A and B are said to have the same cardinality (size). The cardinality of a set is denoted by |A|.

f is bijective if and only if there exists an inverse function f−1 : B→ A such that f−1( f (a)) = a
for all a ∈ A and f ( f−1(b)) = b for all b ∈ B.

Countability: Formal notion of different kinds of infinities.
• Countable: able to enumerate in a list (possibly finite, possibly infinite)

• Countably infinite: able to enumerate in an infinite list; that is, there is a bijection with N.

To show that there is a bijection, the Cantor–Bernstein theorem says that it is sufficient to
find two injections, f : S→N and g :N→ S. Intuitively, this is because an injection f : S→N
means |S| ≤ |N|, and an injection g : N→ S means |N| ≤ |S|; together, we have |N|= |S|.

• Uncountably infinite: unable to be listed out

Use Cantor diagonalization to prove uncountability through contradiction; the classic exam-
ple is the set of reals in [0,1]:

5 0 . . . .
4 0 . . . .
3 0 . . . .
2 0 . . . .
1 0 . . . .
0 0 . . . .7 3 2 0 5 0

4 1 4 2 1 3
6 1 8 0 3 3
1 8 2 8 1 8
1 4 1 5 9 2
5 7 7 2 1 5

N [0,1]

...
...

? 0 . . . .8 2 9 9 1 6

If we change the digits along the diagonal, the new decimal created is different from every
single element in the list in at least one place, so it’s not in the list—this is a contradiction.

Sometimes it can be easier to prove countability/uncountability through bijections with other
countable/uncountable sets respectively. Common countable sets include Z, Q, N×N, finite length
bitstrings, etc. Common uncountable sets include [0,1], R, infinite length bitstrings, etc.
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(a) Your friend is confused about how Cantor diagonalization doesn’t apply to the set of natural
numbers. They argue that natural numbers can be thought of as an infinite length string of
digits, by padding each number with an infinite number of zeroes to the left. If we then
assume by contradiction that we can list out the set of natural numbers with the padded 0’s,
we can change the digits along a diagonal, to create a new natural number not in the list.

3 . . .
2 . . .
1 . . .
0 . . . 0 0 0 0 1

0 1 2 3 4
5 2 8 2 3
9 4 3 2 1...

...
? . . . 1 5 9 4 2

What is wrong with this argument?

Solution:

(a) The issue here is that the newly created number is not necessarily a natural number. This
number has an infinite number of digits (we’ll always be changing the padded zeroes into
some nonzero digits), while natural numbers must have a finite number of digits.

This means that when you perform Cantor diagonalization to show a set S is uncountable, it
is imperative that you ensure that the newly created element is always still an element of S;
otherwise, we cannot say anything about the result of the diagonalization.

2 Count It!
Note 11 For each of the following collections, determine and briefly explain whether it is finite, countably

infinite (like the natural numbers), or uncountably infinite (like the reals):

(a) The integers which divide 8.

(b) The integers which 8 divides.

(c) The functions from N to N.

(d) The set of strings over the English alphabet. (Note that the strings may be arbitrarily long,
but each string has finite length. Also the strings need not be real English words.)

(e) The set of finite-length strings drawn from a countably infinite alphabet, A .

(f) The set of infinite-length strings over the English alphabet.

Solution:

(a) Finite. They are {−8,−4,−2,−1,1,2,4,8}.

(b) Countably infinite. We know that there exists a bijective function f : N→ Z. Then the
function g(n) = 8 f (n) is a bijective mapping from N to integers which 8 divides.
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(c) Uncountably infinite. We use Cantor’s Diagonalization Proof:

Let F be the set of all functions from N to N. We can represent a function f ∈ F as
an infinite sequence ( f (0), f (1), · · ·), where the i-th element is f (i). Suppose towards a
contradiction that there is a bijection from N to F :

0←→( f0(0), f0(1), f0(2), f0(3), . . .)
1←→( f1(0), f1(1), f1(2), f1(3), . . .)
2←→( f2(0), f2(1), f2(2), f2(3), . . .)
3←→( f3(0), f3(1), f3(2), f3(3), . . .)

...

Consider the function g : N→ N where g(i) = fi(i) + 1 for all i ∈ N. We claim that the
function g is not in our finite list of functions. Suppose for contradiction that it were, and
that it was the n-th function fn(·) in the list, i.e., g(·) = fn(·). However, fn(·) and g(·)
differ in the n-th argument, i.e. fn(n) ̸= g(n), because by our construction g(n) = fn(n)+1.
Contradiction!

(d) Countably infinite. The English language has a finite alphabet (52 characters if you count
only lower-case and upper-case letters, or more if you count special symbols – either way,
the alphabet is finite).

We will now enumerate the strings in such a way that each string appears exactly once in
the list. We will use the same trick as used in Lecture note 10 to enumerate the elements of
{0,1}∗ We get our bijection by setting f (n) to be the n-th string in the list. List all strings
of length 1 in lexicographic order, and then all strings of length 2 in lexicographic order, and
then strings of length 3 in lexicographic order, and so forth. Since at each step, there are only
finitely many strings of a particular length ℓ, any string of finite length appears in the list. It
is also clear that each string appears exactly once in this list.

(e) Countably infinite. Let A = {a1,a2, . . .} denote the alphabet. (We are making use of the fact
that the alphabet is countably infinite when we assume there is such an enumeration.) We
will provide two solutions:

Alternative 1: We will enumerate all the strings similar to that in part (b), although the
enumeration requires a little more finesse. Notice that if we tried to list all strings of length
1, we would be stuck forever, since the alphabet is infinite! On the other hand, if we try to
restrict our alphabet and only print out strings containing the first character a∈A , we would
also have a similar problem: the list

a,aa,aaa, . . .

also does not end.

The idea is to restrict both the length of the string and the characters we are allowed to use:
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1. List all strings containing only a1 which are of length at most 1.

2. List all strings containing only characters in {a1,a2} which are of length at most 2 and
have not been listed before.

3. List all strings containing only characters in {a1,a2,a3} which are of length at most 3
and have not been listed before.

4. Proceed onwards.

At each step, we have restricted ourselves to a finite alphabet with a finite length, so each step
is guaranteed to terminate. To show that the enumeration is complete, consider any string s
of length ℓ; since the length is finite, it can contain at most ℓ distinct ai from the alphabet.
Let k denote the largest index of any ai which appears in s. Then, s will be listed in step
max(k, ℓ), so it appears in the enumeration. Further, since we are listing only those strings
that have not appeared before, each string appears exactly once in the listing.

Alternative 2: We will encode the strings into ternary strings. Recall that we used a
similar trick in Lecture note 10 to show that the set of all polynomials with natural coef-
ficients is countable. Suppose, for example, we have a string: S = a5a2a7a4a6. Corre-
sponding to each of the characters in this string, we can write its index as a binary string:
(101,10,111,100,110). Now, we can construct a ternary string where "2" is inserted as
a separator between each binary string. Thus we map the string S to a ternary string:
101210211121002110. It is clear that this mapping is injective, since the original string S can
be uniquely recovered from this ternary string. Thus we have an injective map to {0,1,2}∗.
From Lecture note 10, we know that the set {0,1,2}∗ is countable, and hence the set of all
strings with finite length over A is countable.

(f) Uncountably infinite. We can use a diagonalization argument. First, for a string s, define s[i]
as the i-th character in the string (where the first character is position 0), where i∈N because
the strings are infinite. Now suppose for contradiction that we have an enumeration of strings
si for all i∈N: then define the string s′ as s′[i] = (the next character in the alphabet after si[i]),
where the character after z loops around back to a. Then s′ differs at position i from si for all
i ∈ N, so it is not accounted for in the enumeration, which is a contradiction. Thus, the set is
uncountable.

Alternative 1: The set of all infinite strings containing only as and bs is a subset of the set
we’re counting. We can show a bijection from this subset to the real interval R[0,1], which
proves the uncountability of the subset and therefore entire set as well: given a string in
{a,b}∗, replace the as with 0s and bs with 1s and prepend ′0.′ to the string, which produces
a unique binary number in R[0,1] corresponding to the string.

3 Counting Cartesian Products
Note 11 For two sets A and B, define the cartesian product as A×B = {(a,b) : a ∈ A,b ∈ B}.

(a) Given two countable sets A and B, prove that A×B is countable.
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(b) Given a finite number of countable sets A1,A2, . . . ,An, prove that

A1×A2×·· ·×An

is countable.

(c) Consider a countably infinite number of finite sets: B1,B2, . . . for which each set has at least
2 elements. Prove that B1×B2×·· · is uncountable.

Solution:

(a) As shown in lecture, N×N is countable by creating a zigzag map that enumerates through
the pairs: (0,0),(1,0),(0,1),(2,0),(1,1), . . . . Since A and B are both countable, there exists
a bijection between each set and a subset of N. Thus we know that A×B is countable because
there is a bijection between a subset of N×N and A×B : f (i, j) = (Ai,B j). We can enumerate
the pairs (a,b) similarly.

(b) Proceed by induction.
Base Case: n = 2. We showed in part (a) that A1×A2 is countable since both A1 and A2 are
countable.
Induction Hypothesis: Assume that for some n ∈ N, A1×A2×·· ·×An is countable.
Induction Step: Consider A1×·· ·×An×An+1. We know from our hypothesis that A1×·· ·×
An is countable, call it C = A1×·· ·×An. We proved in part (a) that since C is countable and
An+1 are countable, C×An+1 is countable, which proves our claim.

(c) Let us assume that each Bi has size 2. If any of the sizes are greater than 2, that would only
make the cartesian product larger. Notice that this is equivalent to the set of infinite length
binary strings, which was proven to be uncountable in the notes.

Alternatively, we could provide a diagonalization argument: Assuming for the sake of con-
tradiction that B1×B2×·· · is countable and its elements can be enumerated in a list:

(b1,1,b2,1,b3,1,b4,1, . . .)

(b1,2,b2,2,b3,2,b4,2, . . .)

(b1,3,b2,3,b3,3,b4,3, . . .)

(b1,4,b2,4,b3,4,b4,4, . . .)

...

where bi, j represents the item from set Bi that is included in the jth element of the Cartesian
Product. Now consider the element (b1,1,b2,2,b3,3,b4,4, . . .), where bi, j represents any item
from set Bi that differs from bi, j (i.e. any other element in the set). This is a valid element
that should exist in the Cartesian Product B1,B2, . . . , yet it is not in the enumerated list. This
is a contradiction, so B1×B2×·· · must be uncountable.

4 Counting Functions
Note 11 Are the following sets countable or uncountable? Prove your claims.
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(a) The set of all functions f from N to N such that f is non-decreasing. That is, f (x) ≤ f (y)
whenever x≤ y.

(b) The set of all functions f from N to N such that f is non-increasing. That is, f (x) ≥ f (y)
whenever x≤ y.

Solution:

(a) Uncountable: Let us assume the contrary and proceed with a diagonalization argument. If
there are countably many such function we can enumerate them as

0 1 2 3 . . .

f0 f0(0) f0(1) f0(2) f0(3) . . .
f1 f1(0) f1(1) f1(2) f1(3) . . .
f2 f2(0) f2(1) f2(2) f2(3) . . .

f3 f3(0) f3(1) f3(2) f3(3) . . .
...

...
...

...
... . . .

Now go along the diagonal and define f such that f (x) > fx(x) and f (y) > f (x) if y > x,
which is possible because at step k we only need to find a number ∈ N greater than all the
f j( j) for j ∈ {0, . . . ,k}; for example, we could define such a function using

f (x) =

{
f0(0)+1 x = 0
max( fx(x), f (x−1))+1 x > 0

This function differs from each fi and therefore cannot be on the list, hence the list does
not exhaust all non-decreasing functions. As a result, there must be uncountably many such
functions.

Alternative Solution: Look at the subset S of strictly increasing functions. Any such f
is uniquely identified by its image which is an infinite subset of N. But the set of infinite
subsets of N is uncountable. This is because the set of all subsets of N is uncountable, and
the set of all finite subsets of N is countable. So S is uncountable and hence the set of all
non-decreasing functions must be too.

Alternative Solution 2: We can inject the set of infinitely long binary strings into the set of
non-decreasing functions as follows. For any infinitely long binary string b, let f (n) be equal
to the number of 1’s appearing in the first n-digits of b. It is clear that the function f so
defined is non-decreasing. Also, since the function f is uniquely defined by the infinitely
long binary string, the mapping from binary strings to non-decreasing functions is injective.
Since the set of infinite binary strings is uncountable, and we produced an injection from that
set to the set of non-decreasing functions, that set must be uncountable as well.

(b) Countable: Let Dn be the subset of non-increasing functions for which f (0) = n. Any such
function must stop decreasing at some point (because N has a smallest number), so there can
only be finitely many (at most n) points X f = {x1, . . . ,xk} at which f decreases. Let yi be the
amount by which f decreases at xi, then f is fully described by {(x1,y1), . . . ,(xk,yk),
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(−1,0), . . . ,(−1,0)} ∈Nn =N×N×·· ·×N (n times), where we padded the k values associ-
ated with f with n− k (−1,0)s. In Lecture note 11, we have seen that N×N is countable by
the spiral method. Using it repeatedly, we get N(2l) is countable for all l ∈ N. This gives us
that Nn is countably for any finite n (because Nn ⊂ N(2l) where l is such that 2l ≥ n). Hence
Dn is countable. Since each set Dn is countable we can enumerate it. Map an element of
Dn to (n, j) where j is the label of that element produced by the enumeration of Dn. This
produces an injective map from ∪n∈NDn to N×N and we know that N×N is countable from
Lecture note 11 (via spiral method). Now the set of all non-increasing functions is ∪i∈NDn,
and thus countable.

CS 70, Summer 2025, DIS 3C 7


	Countability Intro
	Count It!
	Counting Cartesian Products
	Counting Functions

