Note 12

CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 3D

1 Computability Intro

Computability: The main focus is on the Halting problem, and programs that provably cannot
exist.

The Halting problem is the problem of determining whether a program P run on input x ever halts,
or whether it loops forever. It turns out that there does not exist any program that solves this
problem.

Using this information, we can prove that other problems also cannot be solved by a computer
program, through the use of reductions. The main idea is to show that if a given problem can be
solved by a computer program TestX, then the Halting problem can also be solved by a computer
program TestHalt that uses TestX as a subroutine.

The primary template we’ll use for this course is as follows. Suppose we want to show that a
program TestX does not exist, where TestX(Q, y) tries to determine whether a program Q on
input y does some task 2" (i.e. it outputs “True” if Q(y) does the task 2", and it outputs “False” if
Q(y) does not do the task .2"). We can define TestHalt as follows (in pseudocode):

def TestHalt (P, x):
def Q(y):
run P(x)
do Z

return TestX(Q, y) # for some given y

Note that this template will be sufficient for our purposes in CS70, but more complex reductions
will require more sophisticated programs—you’ll learn more about this in classes like CS170 and
CS172.

(a) Consider the reduction template given above. Let’s break down what it’s doing.

We follow an argument by contradiction—we assume that there is a program TestX(Q, y)
that is able to determine whether another program Q on input y does some task 2.

There are two cases: either P(x) halts, or it loops forever. We’d like to show that TestHalt
as defined above returns the correct answer in both of these cases.

(i) Suppose P(x) halts. What does TestHalt return, and why?
(ii) Suppose P(x) loops forever. What does TestHalt return, and why?

(iii)) What does this tell us about the existence of TestX? Briefly justify your answer.

CS 70, Summer 2025, DIS 3D

—_

https://www.eecs70.org/assets/pdf/notes/n12.pdf

Solution:

(a) (i) If P(x) halts, then Q(y) will finish executing P(x), and eventually do the task .2". This
means that TestX would return “True”, since Q(y) does eventually do 2.

(ii) If P(x) loops forever, then Q(y) will get stuck while executing P(x), and will never get
to doing the task 2". This means that TestX would return “False”, since Q(y) never
does 2.

(iii)) These answers returned by TestHalt exactly solve the Halting problem! However,
we’ve already shown that the Halting problem cannot be solved by a computer program—
this is a contradiction. As such, TestX cannot exist.

2 Hello World!

Note 12 Determine the computability of the following tasks. If it’s not computable, write a reduction or
self-reference proof. If it is, write the program. Throughout this problem, you are allowed to
execute programs while surpressing their print statements.

(a) You want to determine whether a program P on input x prints "Hello World!". Is there a
computer program that can perform this task? Justify your answer.

(b) You want to determine whether a program P prints "Hello World!" while or before running
the kth line in the program. Is there a computer program that can perform this task? Justify
your answer.

(¢) You want to determine whether a program P prints "Hello World!" in the first k steps of its
execution. Is there a computer program that can perform this task? Justify your answer.

Solution:
(a) Uncomputable. We will reduce TestHalt to PrintsHW(P,x).

TestHalt (P, x):
P> (x):
run P(x) while suppressing print statements
print ("Hello World!")

return PrintsHW(P’, x)
If PrintsHW exists, TestHalt must also exist by this reduction. Since TestHalt cannot
exist, PrintsHW cannot exist.
(b) Uncomputable. We will reduce TestHalt to PrintsHWByK(P,x,k).

TestHalt (P, x):
P’ (x):
run P(x) while suppressing print statements
print ("Hello World!")

CS 70, Summer 2025, DIS 3D 2

https://www.eecs70.org/assets/pdf/notes/n12.pdf

return PrintsHWByK(P’, x, 2)

Here, we notice that P’ has only two lines (or at most 1en(P) + 1 lines, depending on how
this is implemented), and we print “Hello World!” by the last line of P if and only if P (x)
halts.

Alternatively, we can reduce PrintsHW(P,x) from part (a) to this program Print sHWByK (P, x, k):

PrintsHW(P, x):
for i in range(len(P)):
if PrintsHWByK (P, x, i):
return true
return false

Note that we technically need to iterate through all the lines here, since there may be large
jumps within the code of P; this means that we may for example jump from line 1 to line
100 and back to line 2 to print “Hello World!”, but PrintsHWByK(P,x, 100) will return false,
since we first reach line 100 without printing “Hello World!”.

(c) Computable. You can simply run the program until k steps are executed. If P has printed
“Hello World!” by then, return true. Else, return false.

The reason that part (b) is uncomputable while part (c) is computable is that it’s not possi-
ble to determine if we ever execute a specific line because this depends on the logic of the
program, but the number of computer instructions can be counted.

3 Countability and the Halting Problem

Note 11 Using methods from countability, we will prove the Halting Problem is undecidable.

Note 12-
(a) What is a reasonable representation for a computer program? Using this definition, show that

the set of all programs are countable. (Hint: Machine Code)

(b) The Halting Problem only considers programs which take a finite length input. Show that the
set of all finite-length inputs is countable.

(c) Assume that you have a program that tells you whether or not a given program halts on a
specific input. Since the set of all programs and the set of all inputs are countable, we can
enumerate them and construct the following table.

X1 X2 X3 X4
pr/H L H L
7»|L L L H
;3 |H L H L
pa|/L H L L

CS 70, Summer 2025, DIS 3D 3

https://www.eecs70.org/assets/pdf/notes/n11.pdf
https://www.eecs70.org/assets/pdf/notes/n12.pdf

An H (resp. L) in the ith row and jth column means that program p; halts (resp. loops) on
input x;. Now write a program that is not within the set of programs in the table above.

(d) Find a contradiction in part a and part ¢ to show that the halting problem can’t be solved.

Solution:

(a) As in discussion and lecture, we represent a computer programs with a set of finite-length
strings (which, in turn, can be represented by a set of finite length binary strings). The set
of finite length binary strings are countably infinite. Therefore the set of all programs is
countable.

(b) Notice that all inputs can also be represented by a set of finite length binary strings. The set
of finite length binary strings are countably infinite, as proved in Note 11. Therefore the set
of all inputs is countable.

(c) For the sake of deriving a contradiction in part (d), we will use the following program:

procedure P’(x;)
if Pj (Xj) halts then
loop
else
halt
end if
end procedure

(d) If the program you wrote in part ¢) exists, it must occur somewhere in our complete list of
programs, B,. This cannot be. Say that B, has source code x; (i.e. its source code corresponds
to column j). What is the (i, j)th entry of the table? If it’s H, then P,(x;) should loop forever,
by construction; if it’s L, then P, (x_,-) should halt. In either case, we have a contradiction.

4 N-Bit

Note 12 Let N-Bit be a program that takes in a program P and an input x and outputs “true” if the program
ever directly assigns a variable to an n-bit number and “false” otherwise. Can N-Bit exist? If so,
describe the procedure, and if not, prove that it cannot exist. (Hint: model off of the proof that
TestHalt cannot exist)

Solution: No. Assume that NBit exists. Now let’s define Foil in this way:

Foil (P):
if Nbit(P, P) == true:
return
else:
X = 2%n
return

CS 70, Summer 2025, DIS 3D 4

https://www.eecs70.org/assets/pdf/notes/n12.pdf

Then, in the same way as Turing and Halt, when we run Foil(Foil) we get a contradiction in the
program and therefore NBit cannot exist.

CS 70, Summer 2025, DIS 3D 5

	Computability Intro
	Hello World!
	Countability and the Halting Problem
	N-Bit

