
CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 3D
1 Computability Intro

Note 12 Computability: The main focus is on the Halting problem, and programs that provably cannot exist.

The Halting problem is the problem of determining whether a program P run on input x ever halts, or
whether it loops forever. It turns out that there does not exist any program that solves this problem.

Using this information, we can prove that other problems also cannot be solved by a computer program,
through the use of reductions. The main idea is to show that if a given problem can be solved by a computer
program TestX, then the Halting problem can also be solved by a computer program TestHalt that uses
TestX as a subroutine.

The primary template we’ll use for this course is as follows. Suppose we want to show that a program
TestX does not exist, where TestX(Q, y) tries to determine whether a program Q on input y does some
task X (i.e. it outputs “True” if Q(y) does the task X , and it outputs “False” if Q(y) does not do the task
X ). We can define TestHalt as follows (in pseudocode):

def TestHalt(P, x):

def Q(y):

run P(x)

do X
return TestX(Q, y) # for some given y

Note that this template will be sufficient for our purposes in CS70, but more complex reductions will require
more sophisticated programs—you’ll learn more about this in classes like CS170 and CS172.

(a) Consider the reduction template given above. Let’s break down what it’s doing.

We follow an argument by contradiction—we assume that there is a program TestX(Q, y) that is
able to determine whether another program Q on input y does some task X .

There are two cases: either P(x) halts, or it loops forever. We’d like to show that TestHalt as defined
above returns the correct answer in both of these cases.

(i) Suppose P(x) halts. What does TestHalt return, and why?

(ii) Suppose P(x) loops forever. What does TestHalt return, and why?

(iii) What does this tell us about the existence of TestX? Briefly justify your answer.

CS 70, Summer 2025, DIS 3D 1

https://www.eecs70.org/assets/pdf/notes/n12.pdf


2 Hello World!
Note 12 Determine the computability of the following tasks. If it’s not computable, write a reduction or self-

reference proof. If it is, write the program. Throughout this problem, you are allowed to execute programs
while surpressing their print statements.

(a) You want to determine whether a program P on input x prints "Hello World!". Is there a computer
program that can perform this task? Justify your answer.

(b) You want to determine whether a program P prints "Hello World!" while or before running the kth
line in the program. Is there a computer program that can perform this task? Justify your answer.

(c) You want to determine whether a program P prints "Hello World!" in the first k steps of its execution.
Is there a computer program that can perform this task? Justify your answer.

CS 70, Summer 2025, DIS 3D 2

https://www.eecs70.org/assets/pdf/notes/n12.pdf


3 Countability and the Halting Problem
Note 11
Note 12

Using methods from countability, we will prove the Halting Problem is undecidable.

(a) What is a reasonable representation for a computer program? Using this definition, show that the set
of all programs are countable. (Hint: Machine Code)

(b) The Halting Problem only considers programs which take a finite length input. Show that the set of
all finite-length inputs is countable.

(c) Assume that you have a program that tells you whether or not a given program halts on a specific
input. Since the set of all programs and the set of all inputs are countable, we can enumerate them and
construct the following table.

x1 x2 x3 x4 · · ·
p1 H L H L · · ·
p2 L L L H · · ·
p3 H L H L · · ·
p4 L H L L · · ·
...

...
...

...
...

. . .

An H (resp. L) in the ith row and jth column means that program pi halts (resp. loops) on input x j.
Now write a program that is not within the set of programs in the table above.

CS 70, Summer 2025, DIS 3D 3

https://www.eecs70.org/assets/pdf/notes/n11.pdf
https://www.eecs70.org/assets/pdf/notes/n12.pdf


(d) Find a contradiction in part a and part c to show that the halting problem can’t be solved.

4 N-Bit
Note 12 Let N-Bit be a program that takes in a program P and an input x and outputs “true” if the program ever

directly assigns a variable to an n-bit number and “false” otherwise. Can N-Bit exist? If so, describe the
procedure, and if not, prove that it cannot exist. (Hint: model off of the proof that TestHalt cannot exist)

CS 70, Summer 2025, DIS 3D 4

https://www.eecs70.org/assets/pdf/notes/n12.pdf

	Computability Intro
	Hello World!
	Countability and the Halting Problem
	N-Bit

