# CS 70 Discrete Mathematics and Probability Theory Spring 2024 Seshia, Sinclair DIS 4B

### 1 Polynomial Practice

- Note 8 (a) If f and g are non-zero real polynomials, how many real roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)
  - (i) f + g
  - (ii)  $f \cdot g$
  - (iii) f/g, assuming that f/g is a polynomial
  - (b) Now let f and g be polynomials over GF(p).
    - (i) We say a polynomial f = 0 if  $\forall x, f(x) = 0$ . Show that if  $f \cdot g = 0$ , it is not always true that either f = 0 or g = 0.
    - (ii) How many f of degree exactly d < p are there such that f(0) = a for some fixed  $a \in \{0, 1, \dots, p-1\}$ ?
  - (c) Find a polynomial f over GF(5) that satisfies f(0) = 1, f(2) = 2, f(4) = 0. How many such polynomials of degree at most 4 are there?

#### **Solution:**

- (a) (i) It could be that f + g has no roots at all (example:  $f(x) = 2x^2 1$  and  $g(x) = -x^2 + 2$ ), so the minimum number is 0. However, if the highest degree of f + g is odd, then it has to cross the x-axis at least once, meaning that the minimum number of roots for odd degree polynomials is 1. On the other hand, f + g is a polynomial of degree at most  $m = \max(\deg f, \deg g)$ , so it can have at most m roots. The one exception to this expression is if f = -g. In that case, f + g = 0, so the polynomial has an infinite number of roots!
  - (ii) A product is zero if and only if one of its factors vanishes. So if  $f(x) \cdot g(x) = 0$  for some x, then either x is a root of f or it is a root of g, which gives a maximum of deg f + deg g possibilities. Again, there may not be any roots if neither f nor g have any roots (example:  $f(x) = g(x) = x^2 + 1$ ).
  - (iii) If f/g is a polynomial, then it must be of degree  $d = \deg f \deg g$  and so there are at most d roots. Once more, it may not have any roots, e.g. if  $f(x) = g(x)(x^2+1)$ ,  $f/g = x^2+1$  has no root.

(b) (i) There are a couple counterexamples:

**Example 1:**  $x^{p-1} - 1$  and x are both non-zero polynomials on GF(p) for any p. x has a root at 0, and by FLT,  $x^{p-1} - 1$  has a root at all non-zero points in GF(p). So, their product  $x^p - x$  must have a zero on all points in GF(p).

**Example 2:** To satisfy  $f \cdot g = 0$ , all we need is  $(\forall x \in S, f(x) = 0 \lor g(x) = 0)$  where  $S = \{0, \dots, p-1\}$ . We may see that this is not equivalent to  $(\forall x \in S, f(x) = 0)) \lor (\forall x \in S, g(x) = 0)$ .

To construct a concrete example, let p = 2 and we enforce f(0) = 1, f(1) = 0 (e.g. f(x) = 1 - x), and g(0) = 0, g(1) = 1 (e.g. g(x) = x). Then  $f \cdot g = 0$  but neither f nor g is the zero polynomial.

- (ii) We know that in general each of the d + 1 coefficients of  $f(x) = \sum_{k=0}^{d} c_k x^k$  can take any of p values. However, the conditions f(0) and deg f = d impose constraints on the constant coefficient  $f(0) = c_0 = a$  and the top coefficient  $x_d \neq 0$ . Hence we are left with  $(p-1) \cdot p^{d-1}$  possibilities.
- (c) A polynomial of degree  $\leq 4$  is determined by 5 points  $(x_i, y_i)$ . We have assigned three, which leaves  $5^2 = 25$  possibilities. To find a specific polynomial, we use Lagrange interpolation:

$$\Delta_0(x) = 2(x-2)(x-4) \qquad \Delta_2(x) = x(x-4) \qquad \Delta_4(x) = 2x(x-2),$$

and so  $f(x) = \Delta_0(x) + 2\Delta_2(x) = 4x^2 + 1$ .

# 2 Lagrange Interpolation in Finite Fields

Note 8

Find a unique polynomial p(x) of degree at most 2 that passes through points (-1,3), (0,1), and (1,2) in modulo 5 arithmetic using the Lagrange interpolation.

- (a) Find  $p_{-1}(x)$  where  $p_{-1}(0) \equiv p_{-1}(1) \equiv 0 \pmod{5}$  and  $p_{-1}(-1) \equiv 1 \pmod{5}$ .
- (b) Find  $p_0(x)$  where  $p_0(-1) \equiv p_0(1) \equiv 0 \pmod{5}$  and  $p_0(0) \equiv 1 \pmod{5}$ .
- (c) Find  $p_1(x)$  where  $p_1(-1) \equiv p_1(0) \equiv 0 \pmod{5}$  and  $p_1(1) \equiv 1 \pmod{5}$ .
- (d) Construct p(x) using a linear combination of  $p_{-1}(x)$ ,  $p_0(x)$ , and  $p_1(x)$ .

#### **Solution:**

(a) We see

$$p_{-1}(x) \equiv (x-0)(x-1)((-1-0)(-1-1))^{-1}$$
  
$$\equiv (2)^{-1}x(x-1) \pmod{5}$$
  
$$\equiv 3x(x-1) \pmod{5}.$$

(b) We see

$$p_0(x) \equiv (x+1)(x-1)((0+1)(0-1))^{-1}$$
  

$$\equiv (-1)^{-1}(x-1)(x+1) \pmod{5}$$
  

$$\equiv 4(x-1)(x+1) \pmod{5}.$$

(c) We see

$$p_1(x) \equiv (x+1)(x-0)((1+1)(1-0))^{-1}$$
  
$$\equiv (2)^{-1}x(x+1) \pmod{5}$$
  
$$\equiv 3x(x+1) \pmod{5}.$$

(d) Putting everything together,

$$p(x) = 3p_{-1}(x) + 1p_0(x) + 2p_1(x)$$
  
= 9x(x-1) + 4(x-1)(x+1) + 6x(x+1)  
= 4x<sup>2</sup> - 3x - 4 (mod 5)  
= 4x<sup>2</sup> + 2x + 1 (mod 5).

## 3 Secrets in the United Nations

- Note 8 A vault in the United Nations can be opened with a secret combination  $s \in \mathbb{Z}$ . In only two situations should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries, plus the U.N. Secretary-General, must agree.
  - (a) Propose a scheme that gives private information to the Secretary-General and all 193 member countries so that the secret combination *s* can only be recovered under either one of the two specified conditions.
  - (b) The General Assembly of the UN decides to add an extra level of security: each of the 193 member countries has a delegation of 12 representatives, all of whom must agree in order for that country to help open the vault. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary-General and to each representative of each country.

#### **Solution:**

(a) Create a polynomial of degree 192 and give each country one point. Give the Secretary General 193 - 55 = 138 distinct points, so that if she collaborates with 55 countries, they will have a total of 193 points and can reconstruct the polynomial. Without the Secretary-General, the polynomial can still be recovered if all 193 countries come together. (We do all our work in GF(p) where  $p \ge d + 1$ ).

Alternatively, we could have one scheme for condition (i) and another for (ii). The first condition is the secret-sharing setup we discussed in the notes, so a single polynomial of degree 192 suffices, with each country receiving one point, and evaluation at zero returning the combination *s*. For the second condition, create a polynomial *f* of degree 1 with f(0) = s, and give f(1) to the Secretary-General. Now create a second polynomial *g* of degree 54, with g(0) = f(2), and give one point of *g* to each country. This way any 55 countries can recover g(0) = f(2), and then can consult with the Secretary-General to recover s = f(0) from f(1) and f(2).

(b) We'll layer an *additional* round of secret-sharing onto the scheme from part (a). If  $t_i$  is the key given to the *i*th country, produce a degree-11 polynomial  $f_i$  so that  $f_i(0) = t_i$ , and give one point of  $f_i$  to each of the 12 delegates. Do the same for each country (using different  $f_i$  each time, of course).

### 4 To The Moon!

Note 8

A secret number s is required to launch a rocket, and Alice distributed the values

 $(1, p(1)), (2, p(2)), \dots, (n+1, p(n+1))$  of a degree *n* polynomial *p* to a group of \$GME holders Bob<sub>1</sub>,...,Bob<sub>n+1</sub>. As usual, she chose *p* such that p(0) = s. Bob<sub>1</sub> through Bob<sub>n+1</sub> now gather to jointly discover the secret. However, Bob<sub>1</sub> is secretly a partner at Melvin Capital and already knows *s*, and wants to sabotage Bob<sub>2</sub>,...,Bob<sub>n+1</sub>, making them believe that the secret is in fact some fixed  $s' \neq s$ . How could he achieve this? In other words, what value should he report (in terms variables known in the problem, such as s', s or  $y_1$ ) in order to make the others believe that the secret is s'?

#### **Solution:**

We know that in order to discover *s*, the Bobs would compute

$$s = y_1 \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0),$$
(1)

where  $y_i = p(i)$ . Bob<sub>1</sub> now wants to change his value  $y_1$  to some  $y'_1$ , so that

$$s' = y'_1 \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0).$$
<sup>(2)</sup>

Subtracting Equation 1 from 2 and solving for  $y'_1$ , we see that

$$y'_1 = (\Delta_1(0))^{-1} (s' - s) + y_1,$$

where  $(\Delta_1(0))^{-1}$  exists, because deg $\Delta_1(x) = n$  with its *n* roots at 2,..., n + 1 (so  $\Delta_1(0) \neq 0$ ).