## 1 Countability: True or False

(a) The set of all irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ (i.e. real numbers that are not rational) is uncountable.
(b) The set of integers $x$ that solve the equation $3 x \equiv 2(\bmod 10)$ is countably infinite.
(c) The set of real solutions for the equation $x+y=1$ is countable.

For any two functions $f: Y \rightarrow Z$ and $g: X \rightarrow Y$, let their composition $f \circ g: X \rightarrow Z$ be given by $(f \circ g)(x)=$ $f(g(x))$ for all $x \in X$. Determine if the following statements are true or false.
(d) $f$ and $g$ are injective (one-to-one) $\Longrightarrow f \circ g$ is injective (one-to-one).
(e) $f$ is surjective (onto) $\Longrightarrow f \circ g$ is surjective (onto).

## 2 Counting Cartesian Products

For two sets $A$ and $B$, define the cartesian product as $A \times B=\{(a, b): a \in A, b \in B\}$.
(a) Given two countable sets $A$ and $B$, prove that $A \times B$ is countable.
(b) Given a finite number of countable sets $A_{1}, A_{2}, \ldots, A_{n}$, prove that

$$
A_{1} \times A_{2} \times \cdots \times A_{n}
$$

is countable.
(c) Consider a countably infinite number of finite sets: $B_{1}, B_{2}, \ldots$ for which each set has at least 2 elements. Prove that $B_{1} \times B_{2} \times \cdots$ is uncountable.

## 3 Hello World!

Determine the computability of the following tasks. If it's not computable, write a reduction or selfreference proof. If it is, write the program.
(a) You want to determine whether a program $P$ on input $x$ prints "Hello World!". Is there a computer program that can perform this task? Justify your answer.
(b) You want to determine whether a program $P$ prints "Hello World!" before running the $k$ th line in the program. Is there a computer program that can perform this task? Justify your answer.
(c) You want to determine whether a program $P$ prints "Hello World!" in the first $k$ steps of its execution. Is there a computer program that can perform this task? Justify your answer.

