
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair DIS 6A

1 Hello World!

Note 12 Determine the computability of the following tasks. If it’s not computable, write a reduction or
self-reference proof. If it is, write the program.

(a) You want to determine whether a program P on input x prints "Hello World!". Is there a
computer program that can perform this task? Justify your answer.

(b) You want to determine whether a program P prints "Hello World!" before running the kth line
in the program. Is there a computer program that can perform this task? Justify your answer.

(c) You want to determine whether a program P prints "Hello World!" in the first k steps of its
execution. Is there a computer program that can perform this task? Justify your answer.

Solution:

(a) Uncomputable. We will reduce TestHalt to PrintsHW(P,x).

TestHalt(P, x):
P’(x):

run P(x) while suppressing print statements
print("Hello World!")

if PrintsHW(P’, x):
return true

else:
return false

If PrintsHW exists, TestHalt must also exist by this reduction. Since TestHalt cannot
exist, PrintsHW cannot exist.

(b) Uncomputable. Reduce PrintsHW(P,x) from part (a) to this program PrintsHWByK(P,x,k).

PrintsHW(P, x):
for i in range(len(P)):

if PrintsHWByK(P, x, i):
return true

return false

CS 70, Spring 2024, DIS 6A 1

https://www.eecs70.org/assets/pdf/notes/n12.pdf


(c) Computable. You can simply run the program until k steps are executed. If P has printed
“Hello World!” by then, return true. Else, return false.

The reason that part (b) is uncomputable while part (c) is computable is that it’s not possible to
determine if we ever execute a specific line because this depends on the logic of the program,
but the number of computer instructions can be counted.

2 Code Reachability

Note 12 Consider triplets (M,x,L) where

• M is a Java program

• x is some input

• L is an integer

and the question of: if we execute M(x), do we ever hit line L?

Prove this problem is undecidable.

Solution: Suppose we had a procedure that could decide the above; call it Reachable(M, x,
L). Consider the following example of a program deciding whether P(x) halts:

def Halt(P, x):
def M(t):

run P(x) # line 1 of M
return # line 2 of M

return Reachable(M, 0, 2)

Program M reaches line 2 if and only if P(x) halted. Thus, we have implemented a solution to the
halting problem — contradiction.

3 Strings

Note 10 What is the number of strings consisting of:

(a) n ones, and m zeroes?

(b) n1 A’s, n2 B’s and n3 C’s?

(c) n1,n2, . . . ,nk respectively of k different letters?

Solution:

CS 70, Spring 2024, DIS 6A 2

https://www.eecs70.org/assets/pdf/notes/n12.pdf
https://www.eecs70.org/assets/pdf/notes/n10.pdf


(a) This is an n + m length string. We choose n of those positions to be 1, and the rest will
automatically be 0. Thus, the count is

(n+m
n

)
. Another way of thinking about this is that there

are n+m positions, so we can consider (n+m)! permutations. In this permutation, there are
n ones, and the order of these ones doesn’t actually matter. Every n! way to order the ones is
actually the exact same string, thus we divide by n!. Similarly, we divide by m! to account for
the zeros. Thus, we retrieve (n+m)!

n!m! .

(b) For this question, it is easier to consider the second method from the previous solution. There
are n1 + n2 + n3 positions, so we can consider (n1 + n2 + n3)! permutations. In this permuta-
tion, there are n1 A’s, and the order of these A’s doesn’t actually matter. Every n1! way to order
the ones is actually the exact same string, thus we divide by n1!. Similarly, we divide by n2! to
account for the B’s and also by n3! to account for the C’s.
Alternatively, we could’ve used the counting positions strategy to approach this problem,
though it is harder to generalize. We could consider an n1 + n2 + n3 length string. First,
we’ll choose n1 of those positions to be an A. Then, out of the n2 + n3 positions left, we’ll
choose n2 to be a B. Thus, the count becomes

(n1+n2+n3
n1

)(n2+n3
n2

)
which does evaluate to the

same quantity.

(c) Using the same logic from the previous part, we generalize for a size k alphabet.

(n1 +n2 + · · ·+nk)!/(n1! ·n2! · · ·nk!)

.

CS 70, Spring 2024, DIS 6A 3



4 You’ll Never Count Alone

Note 10 (a) An anagram of LIVERPOOL is any re-ordering of the letters of LIVERPOOL, i.e., any string
made up of the letters L, I, V, E, R, P, O, O, L in any order. For example, IVLERPOOL
and POLIVOLRE are anagrams of LIVERPOOL but PIVEOLR and CHELSEA are not. The
anagram does not have to be an English word.

How many different anagrams of LIVERPOOL are there?

(b) How many solutions does y0+y1+ · · ·+yk = n have, if each y must be a non-negative integer?

(c) How many solutions does y0 + y1 + · · ·+ yk = n have, if each y must be a positive integer?

Solution:

(a) In this 9 letter word, the letters L and O are each repeated 2 times while the other letters appear
once. Hence, the number 9! overcounts the number of different anagrams by a factor of 2!×2!
(one factor of 2! for the number of ways of permuting the 2 L’s among themselves and another
factor of 2! for the number of ways of permuting the 2 O’s among themselves). Hence, there
are 9!/(2!)2 different anagrams.

(b)
(n+k

k

)
. We can imagine this as a sequence of n ones and k plus signs: y0 is the number of ones

before the first plus, y1 is the number of ones between the first and second plus, etc. We can
now count the number of sequences using the “balls and bins” method (also known as “stars
and bars”).

(c)
((n−(k+1))+k

k

)
=

(n−1
k

)
. By subtracting 1 from all k + 1 variables, and k + 1 from the total

required, we reduce it to problem with the same form as the previous problem. Once we have
a solution to that we reverse the process, and adding 1 to all the non-negative variables gives
us positive variables.

Alternatively, we can derive a method similar to stars and bars/balls and bins; here, the restric-
tion to positive integers means that we cannot have any empty groups. In particular, instead of
arranging all of the objects (i.e. all the stars and all the bars), we can instead choose where to
place the bars.

Looking at the “gaps” between the stars (i.e. the 1’s), we have a total of n−1 places to put the
bars in between the n stars. Selecting k of these positions (we can’t have two bars occupy the
same gap, otherwise we’d have an empty group), we have a total of

(n−1
k

)
ways to group the

1’s.

CS 70, Spring 2024, DIS 6A 4

https://www.eecs70.org/assets/pdf/notes/n10.pdf

	Hello World!
	Code Reachability
	Strings
	You'll Never Count Alone

