## 1 Box of Marbles

You are given two boxes: one of them containing 900 red marbles and 100 blue marbles, the other one contains 500 red marbles and 500 blue marbles.
(a) If we pick one of the boxes randomly, and pick a marble what is the probability that it is blue?
(b) If we see that the marble is blue, what is the probability that it is chosen from box 1 ?
(c) Suppose we pick one marble from box 1 and without looking at its color we put it aside. Then we pick another marble from box 1 . What is the probability that the second marble is blue?

## Solution:

(a) Let $B$ be the event that the picked marble is blue, $R$ be the event that it is red, $A_{1}$ be the event that the marble is picked from box 1 , and $A_{2}$ be the event that the marble is picked from box 2 . Therefore we want to calculate $\mathbb{P}[B]$. By total probability,

$$
\mathbb{P}[B]=\mathbb{P}\left[B \mid A_{1}\right] P\left[A_{1}\right]+\mathbb{P}\left[B \mid A_{2}\right] \mathbb{P}\left[A_{2}\right]=0.5 \times 0.1+0.5 \times 0.5=0.3
$$

(b) In this part, we want to find $\mathbb{P}\left[A_{1} \mid B\right]$. By Bayes rule,

$$
\mathbb{P}\left[A_{1} \mid B\right]=\frac{\mathbb{P}\left[B \mid A_{1}\right] \mathbb{P}\left[A_{1}\right]}{\mathbb{P}\left[B \mid A_{1}\right] \mathbb{P}\left[A_{1}\right]+\mathbb{P}\left[B \mid A_{2}\right] \mathbb{P}\left[A_{2}\right]}=\frac{0.1 \times 0.5}{0.5 \times 0.1+0.5 \times 0.5}=\frac{1}{6}
$$

(c) Let $B_{1}$ be the event that first marble is blue, $R_{1}$ be the event that the first marble is red, and $B_{2}$ be the event that second marble is blue without looking at the color of first marble. We want to find $\mathbb{P}\left[B_{2}\right]$. By total probability,

$$
\mathbb{P}\left[B_{2}\right]=\mathbb{P}\left[B_{2} \mid B_{1}\right] \mathbb{P}\left[B_{1}\right]+\mathbb{P}\left[B_{2} \mid R_{1}\right] \mathbb{P}\left[R_{1}\right]=\frac{99}{999} \times 0.1+\frac{100}{999} \times 0.9=0.1 .
$$

More generally, one can see that the probability that the $n$-th marble picked from box 1 is blue with probability 0.1 . This is clear by symmetry: all the permutations of the 1000 marbles have the same probability, so the probability that the $n$-th marble is blue is the same as the probability that the first marble is blue.

## 2 Poisoned Smarties

Note 14
Supposed there are 3 people who are all owners of their own Smarties factories. Burr Kelly, being the brightest and most innovative of the owners, produces considerably more Smarties than her competitors and has a commanding $50 \%$ of the market share. Yousef See, who inherited her riches, lags behind Burr and produces $40 \%$ of the world's Smarties. Finally Stan Furd, brings up the rear with a measly $10 \%$. However, a recent string of Smarties related food poisoning has forced the FDA investigate these factories to find the root of the problem. Through her investigations, the inspector found that 2 Smarties out of every 100 at Kelly's factory was poisonous. At See's factory, 5\% of Smarties produced were poisonous. And at Furd's factory, the probability a Smarty was poisonous was 0.1 .
(a) What is the probability that a randomly selected Smarty will be safe to eat?
(b) If we know that a certain Smarty didn't come from Burr Kelly's factory, what is the probability that this Smarty is poisonous?
(c) Given this information, if a randomly selected Smarty is poisonous, what is the probability it came from Stan Furd's Smarties Factory?

## Solution:

(a) Let $S$ be the event that a smarty is safe to eat. Let $B K$ be the event that a smarty is from Burr Kelly's factory. Let $Y S$ be the event that a smarty is from Yousef See's factory. Finally, let $S F$ be the event that a smarty is from Stan Furd's factory.

By total probability, we have

$$
\begin{aligned}
\mathbb{P}[S] & =\mathbb{P}[B K] \mathbb{P}[S \mid B K]+\mathbb{P}[Y S] \mathbb{P}[S \mid Y S]+\mathbb{P}[S F] \mathbb{P}[S \mid S F] \\
& =\frac{1}{2} \cdot \frac{49}{50}+\frac{2}{5} \cdot \frac{19}{20}+\frac{1}{10} \cdot \frac{9}{10} \\
& =\frac{49}{100}+\frac{38}{100}+\frac{9}{100} \\
& =\frac{96}{100}=\frac{24}{25}=0.96
\end{aligned}
$$

Therefore the probability that a Smarty is safe to eat is 0.96 .
(b) Let $P$ be the event that a smarty is poisonous.

$$
\mathbb{P}[P \mid \overline{B K}]=\frac{\mathbb{P}[\overline{B K} \cap P]}{\mathbb{P}[\overline{B K}]}
$$

Since $B K, Y S, S F$ are a partition of the entire sample space, we know that if $B K$ did not occur, then either $Y S$ occurred, or $S F$ occurred:

$$
\begin{aligned}
& =\frac{\mathbb{P}[Y S \cap P]}{\mathbb{P}[\overline{B K}]}+\frac{\mathbb{P}[S F \cap P]}{\mathbb{P}[\overline{B K}]} \\
& =\frac{\mathbb{P}[P \mid Y S] \mathbb{P}[Y S]}{1-\mathbb{P}[B K]}+\frac{\mathbb{P}[P \mid S F] \mathbb{P}[S F]}{1-\mathbb{P}[B K]} \\
& =\frac{\frac{1}{20} \cdot \frac{2}{5}}{\frac{1}{2}}+\frac{\frac{1}{10} \cdot \frac{1}{10}}{\frac{1}{2}}=2 \cdot \frac{2}{100}+2 \cdot \frac{1}{100} \\
& =\frac{6}{100}=\frac{3}{50}=0.06
\end{aligned}
$$

(c) From Bayes' Rule, we know that:

$$
\mathbb{P}[S F \mid P]=\frac{\mathbb{P}[P \mid S F] \mathbb{P}[S F]}{\mathbb{P}[P]}
$$

In part (a), we calculated the probability that any random Smarty was safe to eat; here, notice that $\mathbb{P}[P]=1-\mathbb{P}[S]$. This means we have

$$
\begin{aligned}
\mathbb{P}[S F \mid P] & =\frac{\mathbb{P}[P \mid S F] \mathbb{P}[S F]}{1-\mathbb{P}[S]} \\
& =\frac{\frac{1}{10} \cdot \frac{1}{10}}{1-\frac{24}{25}}=\frac{\frac{1}{100}}{\frac{1}{25}} \\
& =\frac{25}{100}=\frac{1}{4}=0.25
\end{aligned}
$$

## 3 Pairwise Independence

Note 14 Recall that the events $A_{1}, A_{2}$, and $A_{3}$ are pairwise independent if for all $i \neq j, A_{i}$ is independent of $A_{j}$. However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]$.
Suppose you roll two fair six-sided dice. Let $A_{1}$ be the event that the first die lands on 1 , let $A_{2}$ be the event that the second die lands on 6 , and let $A_{3}$ be the event that the two dice sum to 7 .
(a) Compute $\mathbb{P}\left[A_{1}\right], \mathbb{P}\left[A_{2}\right]$, and $\mathbb{P}\left[A_{3}\right]$.
(b) Are $A_{1}$ and $A_{2}$ independent?
(c) Are $A_{2}$ and $A_{3}$ independent?
(d) Are $A_{1}, A_{2}$, and $A_{3}$ pairwise independent?
(e) Are $A_{1}, A_{2}$, and $A_{3}$ mutually independent?

## Solution:

(a) We have that $\mathbb{P}\left[A_{1}\right]=\mathbb{P}\left[A_{2}\right]=\frac{1}{6}$, since we have a $\frac{1}{6}$ probability of getting a particular number on a fair die.
Since there are 6 ways in which the two dice can sum to 7 (i.e. $\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$, we have $\mathbb{P}\left[A_{3}\right]=\frac{1}{6}$ as well.
(b) We want to determine whether $\mathbb{P}\left[A_{1} \cap A_{2}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]$. We already found the probabilities of $A_{1}$ and $A_{2}$ from part (a), so let's look at $\mathbb{P}\left[A_{1} \cap A_{2}\right]$. There's only one possible outcome where the first die is a 1 and the second die is a 6 , so this gives a probability of $\mathbb{P}\left[A_{1} \cap A_{2}\right]=\frac{1}{36}$.
Since $\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=\mathbb{P}\left[A_{1} \cap A_{2}\right]$, these two events are independent.
(c) We want to determine whether $\mathbb{P}\left[A_{2} \cap A_{3}\right]=\mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]$. We already found the probabilities of $A_{2}$ and $A_{3}$ from part (a), so let's look at $\mathbb{P}\left[A_{2} \cap A_{3}\right]$. These two events both occur if the second die lands on a 6 , and the two dice sum to 7 . There's only one way that this can happen, i.e. the first die must be a 1 , so the intersection has probability $\mathbb{P}\left[A_{2} \cap A_{3}\right]=\frac{1}{36}$.
Since $\mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=\mathbb{P}\left[A_{2} \cap A_{3}\right]$, these two events are independent.
(d) To see whether the three events are pairwise independent, we need to ensure that all pairs of events are independent. We've already checked that $A_{1}$ and $A_{2}$ are independent, and that $A_{2}$ and $A_{3}$ are independent, so it suffices to check whether $A_{1}$ and $A_{3}$ are independent.

Similar to the previous two parts, the intersection $A_{1} \cap A_{3}$ means that the first die must land on a 1 , and the two dice sum to 7 . There's only one way for this to happen, i.e. the second die must land on a 6 , so the probability is $\mathbb{P}\left[A_{1} \cap A_{3}\right]=\frac{1}{36}$.
Since $\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{3}\right]=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}=\mathbb{P}\left[A_{1} \cap A_{3}\right]$, these two events are also independent. Since we've now shown that all possible pairs of events are independent, $A_{1}, A_{2}$, and $A_{3}$ are indeed pairwise independent.
(e) Mutual independence requires the additional constraint that $\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]$. We've found the individual probabilities of these events in part (a), so we only need to compute $\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]$.
Here, we must have that the first die lands on 1 , the second die lands on 6 , and the sum of the two dice is equal to 7. There's only one way for this to happen, i.e. the first die is a 1 and the second die is a 6 , so the probability of the intersection of all three events is $\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]=\frac{1}{36}$. However, since $\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{216} \neq \frac{1}{36}=\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]$, these three events are not mutually independent.

