## 1 Box of Marbles

You are given two boxes: one of them containing 900 red marbles and 100 blue marbles, the other one contains 500 red marbles and 500 blue marbles.
(a) If we pick one of the boxes randomly, and pick a marble what is the probability that it is blue?
(b) If we see that the marble is blue, what is the probability that it is chosen from box 1 ?
(c) Suppose we pick one marble from box 1 and without looking at its color we put it aside. Then we pick another marble from box 1 . What is the probability that the second marble is blue?

## 2 Poisoned Smarties

Supposed there are 3 people who are all owners of their own Smarties factories. Burr Kelly, being the brightest and most innovative of the owners, produces considerably more Smarties than her competitors and has a commanding $50 \%$ of the market share. Yousef See, who inherited her riches, lags behind Burr and produces $40 \%$ of the world's Smarties. Finally Stan Furd, brings up the rear with a measly $10 \%$. However, a recent string of Smarties related food poisoning has forced the FDA investigate these factories to find the root of the problem. Through her investigations, the inspector found that 2 Smarties out of every 100 at Kelly's factory was poisonous. At See's factory, $5 \%$ of Smarties produced were poisonous. And at Furd's factory, the probability a Smarty was poisonous was 0.1.
(a) What is the probability that a randomly selected Smarty will be safe to eat?
(b) If we know that a certain Smarty didn't come from Burr Kelly's factory, what is the probability that this Smarty is poisonous?
(c) Given this information, if a randomly selected Smarty is poisonous, what is the probability it came from Stan Furd's Smarties Factory?

## 3 Pairwise Independence

Recall that the events $A_{1}, A_{2}$, and $A_{3}$ are pairwise independent if for all $i \neq j, A_{i}$ is independent of $A_{j}$. However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right] \mathbb{P}\left[A_{3}\right]$.
Suppose you roll two fair six-sided dice. Let $A_{1}$ be the event that the first die lands on 1 , let $A_{2}$ be the event that the second die lands on 6 , and let $A_{3}$ be the event that the two dice sum to 7 .
(a) Compute $\mathbb{P}\left[A_{1}\right], \mathbb{P}\left[A_{2}\right]$, and $\mathbb{P}\left[A_{3}\right]$.
(b) Are $A_{1}$ and $A_{2}$ independent?
(c) Are $A_{2}$ and $A_{3}$ independent?
(d) Are $A_{1}, A_{2}$, and $A_{3}$ pairwise independent?
(e) Are $A_{1}, A_{2}$, and $A_{3}$ mutually independent?

