CS 70 Discrete Mathematics and Probability Theory Spring 2024 Seshia, Sinclair DIS 8A

1 Box of Marbles

Note 14 You are given two boxes: one of them containing 900 red marbles and 100 blue marbles, the other one contains 500 red marbles and 500 blue marbles.

- (a) If we pick one of the boxes randomly, and pick a marble what is the probability that it is blue?
- (b) If we see that the marble is blue, what is the probability that it is chosen from box 1?
- (c) Suppose we pick one marble from box 1 and without looking at its color we put it aside. Then we pick another marble from box 1. What is the probability that the second marble is blue?

2 Poisoned Smarties

- Note 14 Supposed there are 3 people who are all owners of their own Smarties factories. Burr Kelly, being the brightest and most innovative of the owners, produces considerably more Smarties than her competitors and has a commanding 50% of the market share. Yousef See, who inherited her riches, lags behind Burr and produces 40% of the world's Smarties. Finally Stan Furd, brings up the rear with a measly 10%. However, a recent string of Smarties related food poisoning has forced the FDA investigate these factories to find the root of the problem. Through her investigations, the inspector found that 2 Smarties out of every 100 at Kelly's factory was poisonous. At See's factory, 5% of Smarties produced were poisonous. And at Furd's factory, the probability a Smarty was poisonous was 0.1.
 - (a) What is the probability that a randomly selected Smarty will be safe to eat?

(b) If we know that a certain Smarty didn't come from Burr Kelly's factory, what is the probability that this Smarty is poisonous?

(c) Given this information, if a randomly selected Smarty is poisonous, what is the probability it came from Stan Furd's Smarties Factory?

3 Pairwise Independence

Note 14 Recall that the events A_1, A_2 , and A_3 are *pairwise independent* if for all $i \neq j$, A_i is independent of A_j . However, pairwise independence is a weaker statement than *mutual independence*, which requires the additional condition that $\mathbb{P}[A_1 \cap A_2 \cap A_3] = \mathbb{P}[A_1]\mathbb{P}[A_2]\mathbb{P}[A_3]$.

Suppose you roll two fair six-sided dice. Let A_1 be the event that the first die lands on 1, let A_2 be the event that the second die lands on 6, and let A_3 be the event that the two dice sum to 7.

(a) Compute $\mathbb{P}[A_1]$, $\mathbb{P}[A_2]$, and $\mathbb{P}[A_3]$.

(b) Are A_1 and A_2 independent?

```
(c) Are A_2 and A_3 independent?
```

(d) Are A_1, A_2 , and A_3 pairwise independent?

(e) Are A_1 , A_2 , and A_3 mutually independent?