
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair HW 01

1 Logical Equivalence?

Note 1 Decide whether each of the following logical equivalences is correct and justify your answer.

(a) ∀x (P(x)∧Q(x))
?≡ ∀x P(x)∧∀x Q(x)

(b) ∀x (P(x)∨Q(x))
?≡ ∀x P(x)∨∀x Q(x)

(c) ∃x (P(x)∨Q(x))
?≡ ∃x P(x)∨∃x Q(x)

(d) ∃x (P(x)∧Q(x))
?≡ ∃x P(x)∧∃x Q(x)

Solution:

(a) Correct.
Assume that the left hand side is true. Then we know for an arbitrary x P(x)∧Q(x) is true.
This means that both ∀xP(x) and ∀xQ(x). Therefore the right hand side is true. Now for the
other direction assume that the right hand side is true. Since for any x P(x) and for any y Q(y)
holds, then for an arbitrary x both P(x) and Q(x) must be true. Thus the left hand side is true.

(b) Incorrect.
Note that there are many possible counterexamples not described here.

Suppose that the universe (i.e. the values that x can take on) is {1,2} and that P and Q are
truth functions defined on this universe. If we set P(1) to be true, Q(1) to be false, P(2) to be
false and Q(2) to be true, the left-hand side will be true, but the right-hand side will be false.
Hence, we can find a universe and truth functions P and Q for which these two expressions
have different values, so they must be different.

Another more concrete example is if P(x) = x < 0 and Q(x) = x ≥ 0, where the universe is the
real numbers. For any x ∈R, exactly one of P(x) or Q(x) is true, but it is not the case that P(x)
holds for every x, and it is also not the case that Q(x) holds for every x. Since the LHS and
RHS have different values, the two sides are not equivalent.

(c) Correct
Assuming that the left hand side is true, we know there exists some x such that one of P(x)
and Q(x) is true. Thus ∃xP(x) or ∃xQ(x) and the right hand side is true. To prove the other
direction, assume the left hand side is false. Then there does not exists an x for which P(x)∨

CS 70, Spring 2024, HW 01 1

https://www.eecs70.org/assets/pdf/notes/n1.pdf


Q(x) is true, which means there is no x for which P(x) or Q(x) is true. Therefore the right hand
side is false.

(d) Incorrect.
Note, there are many possible counterexamples not described here.

Suppose that the universe (i.e. the values that x can take on) is the natural numbers N, and that
P and Q are truth functions defined on this universe. Here, suppose we set P(1) to be true and
P(x) to be false for all other x, and Q(2) to be true and Q(x) to be false for all other x. (In other
words, P(x) = (x = 1) and Q(x) = (x = 2).)

With these definitions, the right hand side would be true, since there exists some value of x
that makes P(x) true (namely, x = 1), and there exists some value of x that makes Q(x) true
(namely, x = 2). However, there would be no value of x at which both P(x) and Q(x) would be
simultaneously true, so the left hand side would be false. Hence, we can find a universe and
truth functions P and Q for which these two expressions have different values, so they must be
different.

2 Prove or Disprove

Note 2 For each of the following, either prove the statement, or disprove by finding a counterexample.

(a) (∀n ∈ N) if n is odd then n2 +4n is odd.

(b) (∀a,b ∈ R) if a+b ≤ 15 then a ≤ 11 or b ≤ 4.

(c) (∀r ∈ R) if r2 is irrational, then r is irrational.

(d) (∀n ∈ Z+) 5n3 > n!. (Note: Z+ is the set of positive integers)

(e) The product of a non-zero rational number and an irrational number is irrational.

Solution:

(a) Answer: True.

Proof. We will use a direct proof. Assume n is odd. By the definition of odd numbers, n =

2k+1 for some natural number k. This means that we have

n2 +4n = (2k+1)2 +4(2k+1)

= 4k2 +12k+5

= 2(2k2 +6k+2)+1

Since 2k2 +6k+2 is a natural number, by the definition of odd numbers, n2 +4n is odd.

Alternatively, we could also factor the expression to get n(n+4). Since n is odd, n+4 is also
odd. The product of 2 odd numbers is also an odd number. Hence n2 +4n is odd.
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(b) Answer: True.

Proof. We will use a proof by contraposition. Suppose that a > 11 and b > 4 (note that this is
equivalent to ¬(a ≤ 11∨b ≤ 4)). Since a > 11 and b > 4, a+b > 15 (note that a+b > 15 is
equivalent to ¬

(
a+b ≤ 15

)
). Thus, if a+b ≤ 15, then a ≤ 11 or b ≤ 4.

(c) Answer: True.

Proof. We will use a proof by contraposition. Assume that r is rational. Since r is rational,
it can be written in the form a

b where a and b are integers with b ̸= 0. Then r2 can be written
as a2

b2 . By the definition of rational numbers, r2 is a rational number, since both a2 and b2 are
integers, with b ̸= 0. By contraposition, if r2 is irrational, then r is irrational.

(d) Answer: False.

Proof. We will show a counterexample. Let n = 7. Here, 5 ·73 = 1715, but 7! = 5040. Since
5n3 < n!, the claim is false.

A counterexample that is easier to see without much calculation is for a much larger number
like n = 100; here, 100! is clearly more than 5 · 1003 = 100 · 50 · 25 · 5 · 4 · 2, since the latter
product contains only a subset of the terms in 100!.

(e) Answer: True.

Proof. We prove the statement by contradiction. Suppose that ab = c, where a ̸= 0 is rational,
b is irrational, and c is rational. Since a and b are not zero (because 0 is rational), c is also
non-zero. Thus, we can express a = p

q and c = r
s , where p,q,r, and s are nonzero integers.

Then
b =

c
a
=

rq
ps
,

which is the ratio of two nonzero integers, giving that b is rational. This contradicts our initial
assumption, so we conclude that the product of a nonzero rational number and an irrational
number is irrational.

3 Twin Primes

Note 2 (a) Let p > 3 be a prime. Prove that p is of the form 3k+1 or 3k−1 for some integer k.

(b) Twin primes are pairs of prime numbers p and q that have a difference of 2. Use part (a) to
prove that 5 is the only prime number that takes part in two different twin prime pairs.

Solution:
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(a) First we note that any integer can be written in one of the forms 3k, 3k+ 1, or 3k+ 2. (Note
that 3k+2 is equal to 3(k+1)−1. Since k is arbitary, we can treat these as equivalent forms).

We can now prove the contrapositive: that any integer m > 3 of the form 3k must be composite.
Any such integer is divisible by 3, so this is true right away. Thus our original claim is true as
well.

(b) We can check all the primes up to 5 to see that of these, only 5 takes part in two twin prime
pairs (3,5 and 5,7). What about primes > 5?

For any prime m > 5, we can check if m+2 and m−2 are both prime. Note that if m > 5, then
m+2 > 3 and m−2 > 3 so we can apply part (a) and we can do a proof by cases based on the
two forms from part (a).

Case 1: m is of the form 3k+1. Then m+2 = 3k+3, which is divisible by 3. So m+2 is not
prime.

Case 2: m is of the form 3k−1. Then m−2 = 3k−3, which is divisible by 3. So m−2 is not
prime.

So in either case, at least one of m+2 and m−2 is not prime.

4 Airport

Note 3 Suppose that there are 2n+ 1 airports, where n is a positive integer. The distances between any
two airports are all different. For each airport, exactly one airplane departs from it and is destined
for the closest airport. Prove by induction that there is an airport which has no airplanes destined
for it.

Solution: We proceed by induction on n. For n = 1, let the 3 airports be A, B, C and without loss
of generality suppose B,C is the closest pair of airports (which is well defined since all distances
are different). Then the airplanes departing from B and C are flying towards each other. Since the
airplane from A must fly to somewhere else, no airplanes are destined for airport A.

Now suppose the statement holds for n = k, i.e. when there are 2k + 1 airports. For n = k + 1,
i.e. when there are 2k + 3 airports, the airplanes departing from the closest two airports (say X
and Y ) must be destined for each other’s starting airports. Removing these two airports reduce the
problem to 2k+1 airports.

From the inductive hypothesis, we know that among the 2k + 1 airports remaining, there is an
airport with no incoming flights which we call airport Z. When we add back the two airports that
we removed, there are two scenarios:

• Some of the flights get remapped to X or Y .

• None of the flights get remapped.

In either scenario, we conclude that the airport Z will continue to have no incoming flights when
we add back the two airports, and so the statement holds for n = k+ 1. By induction, the claim
holds for all n ≥ 1.
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5 A Coin Game

Note 3 Your "friend" Stanley Ford suggests you play the following game with him. You each start with a
single stack of n coins. On each of your turns, you select one of your stacks of coins (that has at
least two coins) and split it into two stacks, each with at least one coin. Your score for that turn is
the product of the sizes of the two resulting stacks (for example, if you split a stack of 5 coins into
a stack of 3 coins and a stack of 2 coins, your score would be 3 ·2 = 6). You continue taking turns
until all your stacks have only one coin in them. Stan then plays the same game with his stack of
n coins, and whoever ends up with the largest total score over all their turns wins.

Prove that no matter how you choose to split the stacks, your total score will always be n(n−1)
2 .

(This means that you and Stan will end up with the same score no matter what happens, so the
game is rather pointless.)

Solution:

We can prove this by strong induction on n.

Base Case: If n = 1, you start with a stack of one coin, so the game immediately terminates. Your
total score is zero–and indeed, n(n−1)

2 = 1·0
2 = 0.

Inductive Step: Suppose that if you start with i coins (for i between 1 and n inclusive), your score
will be i(i−1)

2 no matter what strategy you employ. Now suppose you start with n+1 coins. In your
first move, you must split your stack into two smaller stacks. Call the sizes of these stacks s1 and
s2 (so s1 + s2 = n+ 1 and s1,s2 ≥ 1). Your end score comes from three sources: the points you
get from making this first split, the points you get from future splits involving coins from stack
1, and the points you get from future splits involving coins from stack 2. From the rules of the
game, we know you get s1s2 points from the first split. From the inductive hypothesis (which we
can apply because s1 and s2 are between 1 and n), we know that the total number of points you get
from future splits of stack 1 is s1(s1−1)

2 and similarly that the total number of points you get from
future splits of stack 2 is s2(s2−1)

2 , regardless of what strategy you employ in splitting them. Thus,
the total number of points we score is

s1s2 +
s1(s1 −1)

2
+

s2(s2 −1)
2

=
s1(s1 −1)+2s1s2 + s2(s2 −1)

2

=

(
s1(s1 −1)+ s1s2

)
+
(
s2(s2 −1)+ s1s2

)
2

=
s1(s1 + s2 −1)+ s2(s1 + s2 −1)

2

=
(s1 + s2)(s1 + s2 −1)

2

Since s1 + s2 = n+1, this works out to (n+1)(n+1−1)
2 , which is what we wanted to show your total

number of points came out to. This completes our proof by induction.
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6 Grid Induction

Note 3 Pacman is walking on an infinite 2D grid. He starts at some location (i, j)∈N2 in the first quadrant,
and is constrained to stay in the first quadrant (say, by walls along the x and y axes).

Every second he does one of the following (if possible):

(i) Walk one step down, to (i, j−1).

(ii) Walk one step left, to (i−1, j).

For example, if he is at (5,0), his only option is to walk left to (4,0); if Pacman is instead at (3,2),
he could walk either to (2,2) or (3,1).

Prove by induction that no matter how he walks, he will always reach (0,0) in finite time.

(Hint: Try starting Pacman at a few small points like (2,1) and looking all the different paths he
could take to reach (0,0). Do you notice a pattern in the number of steps he takes? Try to use this
to strengthen the inductive hypothesis.)

Solution: On first glance, this problem seems quite tricky, since we’d want to induct on two vari-
ables (i and j) rather than just one variable (as we’ve seen most commonly). However, following
the hint, if we try out some smaller cases, we can notice that it takes Pacman i+ j seconds to reach
(0,0) if he starts in position (i, j), regardless what path he takes. This would imply that he reaches
(0,0) in a finite amount of time, since i+ j is a finite number.

This means that the quantity i+ j is something we could instead focus on, rather than the coordinate
(i, j). In particular, we can try to induct on i+ j (essentially inducting on the amount of time it
takes for Pacman to reach (0,0)), rather than inducting on i and j separately.

Proof. Base Case: If i+ j = 0, we know that i = j = 0, since i and j must be non-negative. Hence,
we have that Pacman is already at position (0,0) and so will take 0 = i+ j steps to get there.

Inductive Hypothesis: Suppose that if Pacman starts at position (i, j) such that i+ j = n, he will
reach (0,0) in finite time regardless of his path.

Inductive Step: Now suppose Pacman starts at position (i, j) such that i+ j = n+1. If Pacman’s
first move is to position (i−1, j), the sum of his x and y positions will be i−1+ j = (i+ j)−1 = n.
Thus, our inductive hypothesis tells us that it will take him a finite amount of time to get to (0,0)
no matter what path he takes. If Pacman’s first move isn’t to (i−1, j), then it must be to (i, j−1).
Again in this case, the inductive hypothesis will tell us that Pacman will use a finite amount of
time to get to (0,0) no matter what path he takes. Thus, in either case, we have that Pacman will
take a finite amount of time (one second for the first move and some additional finite time for the
remainder) in order to reach (0,0), proving the claim for n+1.

Note that once we had observed that it seems to take exactly i+ j seconds for Pacman to reach (0,0)
from (i, j), we could have tried to prove this stronger claim. This is equivalent to the above proof,
with the only difference being the more specific length of time used in the inductive hypothesis;
all other steps are identical.
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One can also prove this statement without this trick inducting on i+ j. The proof isn’t quite as
elegant, but is included here anyways for reference.

We first prove by induction on i that if Pacman starts from position (i,0), he will reach (0,0) in
finite time.

Proof. Base Case: If i = 0, Pacman starts at position (0,0), so he doesn’t need any more steps.
Thus, it takes Pacman 0 steps to reach the origin, where 0 is a finite number.

Inductive Hypothesis: Suppose that if i = n (that is, if Pacman starts at position (n,0)), he will
reach (0,0) in finite time.

Inductive Step: Now say Pacman starts at position (n+ 1,0). Since he is on the x-axis, he has
only one move: he has to move to (n,0). From the inductive hypothesis, we know he will only
take finite time to get to (0,0) once he’s gotten to (n,0), so he’ll only take a finite amount of time
plus one second to get there from (n+1,0). A finite amount of time plus one second is still a finite
amount of time, so we’ve proved the claim for i = n+1.

We can now use this statement as the base case to prove our original claim by induction on j.

Proof. Base Case: If j = 0, Pacman starts at position (i,0) for some i ∈ N. We proved above that
Pacman must reach (0,0) in finite time starting from here.

Inductive Hypothesis: Suppose that if Pacman starts in position (i,n), he’ll reach (0,0) in finite
time no matter what i is.

Inductive Step: We now consider what happens if Pacman starts from position (i,n+ 1), where
i can be any natural number. If Pacman starts by moving down, we can immediately apply the
inductive hypothesis, since Pacman will be in position (i,n). However, if Pacman moves to the
left, he’ll be in position (i−1,n+1), so we can’t yet apply the inductive hypothesis. But note that
Pacman can’t keep moving left forever: after i such moves, he’ll hit the wall on the y-axis and be
forced to move down. Thus, Pacman must make a vertical move after only finitely many horizontal
moves–and once he makes that vertical move, he’ll be in position (k,n) for some 0 ≤ k ≤ i, so the
inductive hypothesis tells us that it will only take him a finite amount of time to reach (0,0) from
there. This means that Pacman can only take a finite amount of time moving to the left, one second
making his first move down, then a finite amount of additional time after his first vertical move.
Since a finite number plus one plus another finite number is still finite, this gives us our desired
claim: Pacman must reach (0,0) in finite time if he starts from position (i,n+1) for any i ∈N.

7 (Optional) Calculus Review

In the probability section of this course, you will be expected to compute derivatives, integrals,
and double integrals. This question contains a couple examples of the kinds of calculus you will
encounter.
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(a) Compute the following integral: ∫
∞

0
sin(t)e−t dt .

(b) Compute the values of x ∈ (−2,2) that correspond to local maxima and minima of the function

f (x) =
∫ x2

0
t cos

(√
t
)

dt .

Classify which x correspond to local maxima and which to local minima.

(c) Compute the double integral ∫∫
R

2x+ ydA ,

where R is the region bounded by the lines x = 1, y = 0, and y = x.

Solution:

(a) Let I =
∫

sin(t)e−t dt.
Use integration by parts, with u = sin(t) and dv = e−t .
This means du = cos(t) and v =−e−t .

I =
∫

sin(t)e−t dt = uv−
∫

v ·du

=−sin(t)e−t +
∫

e−t cos(t)dt

Use integration by parts again on
∫

e−t cos(t)dt, with u = cos(t) and dv = e−t . This means
du =−sin(t) and dv =−e−t .∫

e−t cos(t)dt = uv−
∫

v ·du

=−cos(t)e−t −
∫

e−t · sin(t)dt

=−cos(t)e−t − I

Combining these results:

I =−sin(t)e−t − cos(t)e−t − I

⇒ 2I =−sin(t)e−t − cos(t)e−t

⇒ I =
−sin(t)e−t − cos(t)e−t

2

Finally, we have:

I
∣∣∣∣∞
0
=

0−0
2

− 0−1
2

=
1
2
.
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(b) Compute the derivative of the function, and set it equal to 0. Let y = x2. By the Chain Rule
and the Fundamental Theorem of Calculus,

d f
dx

=
d f
dy

· dy
dx

= ycos(
√

y) ·2x

= 2x3 cos(|x|)
= 2x3 cos(x) = 0

We get that the derivative is 0 only when x∗ = 0, or when cos(x∗) = 0. On the interval (−2,2),
this corresponds to critical points −π/2,0, and π/2.

To classify which correspond to local maxima and which to local minima, we examine how
the sign of the derivative changes.

Around x = π/2, the derivative is positive for x < π/2 and negative for x > π/2. The same
holds for x =−π/2. Thus, x =±π/2 correspond to local maxima.

Around x = 0, the derivative is negative for x < 0 and positive for x > 0. Thus, x = 0 corre-
sponds to a local minima.

(c) We may set up the integral over the region R as follows:∫ 1

0

∫ x

0
2x+ ydydx .

Evaluating this integral gives∫ 1

0

∫ x

0
2x+ ydydx =

∫ 1

0
2xy+

y2

2

∣∣∣∣x
0

dx

=
∫ 1

0

5x2

2
dx

=
5x3

6

∣∣∣∣1
0

=
5
6
.
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