
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair HW 02

1 Universal Preference

Note 4 Suppose that preferences in a stable matching instance are universal: all n jobs share the prefer-
ences C1 >C2 > · · ·>Cn and all candidates share the preferences J1 > J2 > · · ·> Jn.

(a) What pairing do we get from running the algorithm with jobs proposing? Can you prove this
happens for all n?

(b) What pairing do we get from running the algorithm with candidates proposing?

(c) What does this tell us about the number of stable pairings?

Solution:

(a) The pairing results in (Ci,Ji) for each i ∈ {1,2, ...,n}. This result can be proved by induction:

Our base case is when n = 1, so the only pairing is (C1,J1), and thus the base case is trivially
true.

Now assume this is true for some n ∈ N. On the first day with n+1 jobs and n+1 candidates,
all n+ 1 jobs will propose to C1. C1 prefers J1 the most, and the rest of the jobs will be
rejected. This leaves a set of n unpaired jobs and n unpaired candidates who all have the same
preferences (after the pairing of (C1,J1)). By the process of induction, this means that every
ith preferred candidate will be paired with the ith preferred job.

(b) The pairings will again result in (Ji,Ci) for each i ∈ {1,2, ...,n}. This can be proved by induc-
tion in the same as above, but replacing “job” with “candidate” and vice-versa.

(c) We know that job-proposing produces a candidate-pessimal stable pairing. We also know that
candidate-proposing produces a candidate-optimal stable pairing. We found that candidate-
optimal and candidate-pessimal pairings are the same. This means that there is only one stable
pairing, since both the best and worst pairings (for candidates) are the same pairings.

2 Pairing Up

Note 4 Prove that for every even n ≥ 2, there exists an instance of the stable matching problem with n jobs
and n candidates such that the instance has at least 2n/2 distinct stable matchings.

Solution:

CS 70, Spring 2024, HW 02 1

https://www.eecs70.org/assets/pdf/notes/n4.pdf
https://www.eecs70.org/assets/pdf/notes/n4.pdf

To prove that there exists such a stable matching instance for any even n ≥ 2, it suffices to construct
such an instance. But first, we look at the n = 2 case to generate some intuition. We can recognize
that for the following preferences:

J1 C1 >C2
J2 C2 >C1

C1 J2 > J1
C2 J1 > J2

both S = {(J1,C1),(J2,C2)} and T = {(C1,J2),(C2,J1)} are stable pairings.

The n/2 in the exponent motivates us to consider pairing the n jobs into n/2 groups of 2 and
likewise for the candidates. We pair up job 2k−1 and 2k into a pair and candidate 2k−1 and 2k
into a pair, for 1 ≤ k ≤ n/2.

From here, we recognize that for each pair (J2k−1,J2k) and (C2k−1,C2k), mirroring the preferences
above would yield 2 stable matchings from the perspective of just these pairs. If we can extend
this perspective to all n/2 pairs, this would be a total of 2n/2 stable matchings.

Our construction thus results in preference lists like follows:

J1 C1 >C2 > .. .

J2 C2 >C1 > .. .
...

...
J2k−1 C2k−1 >C2k > .. .

J2k C2k >C2k−1 > .. .
...

...
Jn−1 Cn−1 >Cn > .. .

Jn Cn >Cn−1 > .. .

C1 J2 > J1 > .. .

C2 J1 > J2 > .. .
...

...
C2k−1 J2k > J2k−1 > .. .

C2k J2k−1 > J2k > .. .
...

...
Cn−1 Jn > Jn−1 > .. .

Cn Jn−1 > Jn > .. .

Each match will have jobs in the kth pair paired to candidates in the kth pair for 1 ≤ k ≤ n/2.

A job j in pair k will never form a rogue couple with any candidate c in pair m ̸= k since it always
prefers the candidates in this pair over all candidates across other pairs. Since each job in pair k
can be stably matched to either candidate in pair k, and there are n/2 total pairs, the number of
stable matchings is 2n/2.

3 Upper Bound

Note 4 (a) In the notes, we show that the stable matching algorithm terminates in at most n2 days. Prove
the following stronger result: the stable matching algorithm will always terminate in at most
(n−1)2 +1 = n2 −2n+2 days.

(b) Provide a set of preference lists for 4 jobs and 4 candidates that will result in the upper bound
from part (a) when running the Propose-and-Reject algorithm. Verify this by running the
Propose-and-Reject algorithm on your preference lists.

CS 70, Spring 2024, HW 02 2

https://www.eecs70.org/assets/pdf/notes/n4.pdf

Solution:

(a) Recall that there is always a candidate who receives only one proposal (on the last day). Other
than that candidate, every other candidate can reject up to n− 1 jobs. Thus, there’s a total
of (n−1)2 = n2 −2n+1 rejections. Conceptually, in the worst case scenario, there would be
exactly one rejection per day; if we were to hand out none, then the algorithm would terminate.
On the final day, the candidate who is proposed to only once receives their offer. Thus, the
process takes at most (n−1)2 +1 = n2 −2n+2 days.

(b) As per discussion in the solution to part (a), the main motivation for the construction will
be the line “in the worst case scenario, there would be exactly one rejection per day". One
such preference list that would result in this as follows, and the execution of the algorithm is
presented as well.

Jobs Preferences
J1 C1 >C2 >C3 >C4
J2 C2 >C3 >C1 >C4
J3 C3 >C1 >C2 >C4
J4 C1 >C2 >C3 >C4

Candidates Preferences
C1 J2 > J1 > anything
C2 J3 > J2 > anything
C3 J4 > J3 > anything
C4 anything

Candidate Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10
C1 J1, J4 J1 J1 J1, J3 J1 J1 J1, J2 J2 J2 J2
C2 J2 J2, J4 J2 J2 J2, J3 J3 J3 J1, J3 J3 J3
C3 J3 J3 J3, J4 J4 J4 J2, J4 J4 J4 J1, J4 J4
C4 J1

4 Build-Up Error?

Note 5 What is wrong with the following "proof"? In addition to finding a counterexample, you should
explain what is fundamentally wrong with this approach, and why it demonstrates the danger of
build-up error.

False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is con-
nected.

Proof? We use induction on the number of vertices n ≥ 1.

Base case: There is only one graph with a single vertex and it has degree 0. Therefore, the base
case is vacuously true, since the if-part is false.

Inductive hypothesis: Assume the claim is true for some n ≥ 1.

Inductive step: We prove the claim is also true for n+1. Consider an undirected graph on n vertices
in which every vertex has degree at least 1. By the inductive hypothesis, this graph is connected.
Now add one more vertex x to obtain a graph on (n+1) vertices, as shown below.

CS 70, Spring 2024, HW 02 3

https://www.eecs70.org/assets/pdf/notes/n5.pdf

n-vertex graph

z

y

x

All that remains is to check that there is a path from x to every other vertex z. Since x has degree
at least 1, there is an edge from x to some other vertex; call it y. Thus, we can obtain a path from x
to z by adjoining the edge {x,y} to the path from y to z. This proves the claim for n+1.

Solution:

The mistake is in the argument that “every (n+1)-vertex graph with minimum degree 1 can be ob-
tained from an n-vertex graph with minimum degree 1 by adding 1 more vertex”. Instead of starting
by considering an arbitrary (n+1)-vertex graph, this proof only considers an (n+1)-vertex graph
that you can make by starting with an n-vertex graph with minimum degree 1. As a counterexam-
ple, consider a graph on four vertices V = {1,2,3,4} with two edges E = {{1,2},{3,4}}. Every
vertex in this graph has degree 1, but there is no way to build this 4-vertex graph from a 3-vertex
graph with minimum degree 1.

More generally, this is an example of build-up error in proof by induction. Usually this arises from
a faulty assumption that every size n+ 1 graph with some property can be “built up” from a size
n graph with the same property. (This assumption is correct for some properties, but incorrect for
others, such as the one in the argument above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back” process in
the inductive step: start with a size n+ 1 graph, remove a vertex (or edge), apply the inductive
hypothesis P(n) to the smaller graph, and then add back the vertex (or edge) and argue that P(n+1)
holds.

Let’s see what would have happened if we’d tried to prove the claim above by this method. In the
inductive step, we must show that P(n) implies P(n+1) for all n ≥ 1. Consider an (n+1)- vertex
graph G in which every vertex has degree at least 1. Remove an arbitrary vertex v, leaving an n-
vertex graph G′ in which every vertex has degree... uh-oh! The reduced graph G′ might contain a
vertex of degree 0, making the inductive hypothesis P(n) inapplicable! We are stuck—and properly
so, since the claim is false!

5 Proofs in Graphs

Note 5 (a) On the axis from San Francisco traffic habits to Los Angeles traffic habits, Old California is
more towards San Francisco: that is, civilized. In Old California, all roads were one way
streets. Suppose Old California had n cities (n ≥ 2) such that for every pair of cities X and Y ,

CS 70, Spring 2024, HW 02 4

https://www.eecs70.org/assets/pdf/notes/n5.pdf

either X had a road to Y or Y had a road to X .

Prove that there existed a city which was reachable from every other city by traveling through
at most 2 roads.

[Hint: Induction]

(b) Consider a connected graph G with n vertices which has exactly 2m vertices of odd degree,
where m > 0. Prove that there are m walks that together cover all the edges of G (i.e., each
edge of G occurs in exactly one of the m walks, and each of the walks should not contain any
particular edge more than once).

[Hint: In lecture, we have shown that a connected undirected graph has an Eulerian tour if and
only if every vertex has even degree. This fact may be useful in the proof.]

(c) Prove that any graph G is bipartite if and only if it has no tours of odd length.

[Hint: In one of the directions, consider the lengths of paths starting from a given vertex.]

Solution:

(a) We prove this by induction on the number of cities n.

Base case: For n = 2, there’s always a road from one city to the other.

Inductive Hypothesis: When there are k cities, there exists a city c that is reachable from every
other city by traveling through at most 2 roads.

Inductive Step: Consider the case where there are k + 1 cities. Remove one of the cities d
and all of the roads to and from d. Now there are k cities, and by our inductive hypothesis,
there exists some city c which is reachable from every other city by traveling through at most
2 roads. Let A be the set of cities with a road to c, and B be the set of cities two roads away
from c. The inductive hypothesis states that the set S of the k cities consists of S = {c}∪A∪B.

Now add back d and all roads to and from d.

Between d and every city in S, there must be a road from one to the other. If there is at least
one road from d to {c}∪A, c would still be reachable from d with at most 2 road traversals.
Otherwise, if all roads from {c}∪A point to d, d will be reachable from every city in B with at
most 2 road traversals, because every city in B can take one road to go to a city in A, then take
one more road to go to d. In either case there exists a city in the new set of k+1 cities that is
reachable from every other city by traveling at most 2 roads.

Alternate Solution :Alternatively, we can prove this using properties of directed graphs. Let
c be the city with the largest in-degree. Note that this graph is essentially a complete graph,
where each edge is a directed edge instead of an undirected edge. Therefore, the total in degree
sums to n(n−1)/2, and so does the total out degree. In addition, the in degree + out degree of
any vertex must add up to n−1.

Because the total in-degree of all vertices is n(n−1)/2, The largest in-degree is d ≥ (n−1)/2.
Let S be the these d cities that can reach c by one edge.

CS 70, Spring 2024, HW 02 5

For any other city x, it has to have at least (n− 1)− d out-degree (because in-degree <= d).
Notice that there are n total vertices, two of which are x or c, and d vertices that connect to
c through one edge. Thus, there are n− 2− d other vertices. Since x has out degree at least
n− 1− d > n− 2− d, it must therefore connect to at least one vertex in S by the pigeonhole
principle.

Thus, all vertices are either connected to c through 1 or 2 edges.

(b) We split the 2m odd-degree vertices into m pairs, and join each pair with an edge, adding m
more edges in total. (Here, we allow for the possibility of multi-edges, that is, pairs of vertices
with more than one edge between them.) Notice that now all vertices in this graph are of even
degree. Now by Euler’s theorem the resulting graph has an Eulerian tour. Removing the m
added edges breaks the tour into m walks covering all the edges in the original graph, with
each edge belonging to exactly one walk.

(c) To prove the claim, we need to prove two directions: if G is bipartite, it contains no tours of
odd length, and if G contains no tours of odd length, it must be bipartite.

Suppose G is bipartite, and let L and R be the two disjoint sets of vertices such that there does
not exist any edge between two vertices in L or two vertices in R. Further, suppose there is
some tour in G, and we start traversing this tour at v0 ∈ L.

Since each edge in G connects a vertex in L to a vertex in R, the first edge in the tour connects
the start vertex v0 to a vertex v1 ∈ R. Similarly, the second edge connects v1 ∈ R to v2 ∈ L. In
general, it must be the case that the 2kth edge connects vertex v2k−1 ∈ R to v2k ∈ L, and the
2k+1th edge connects vertex v2k ∈ L to v2k+1 ∈ R.

Since only even numbered edges connect to vertices in L, and we started our tour in L, the tour
must end with an even number of edges.

For the opposite direction, suppose G contains no tours of odd length. Without loss of gener-
ality, let us consider one connected component of G; the following reasoning can be applied to
all of the connected components of G.

Let v be an arbitrary vertex in G; we can divide all of the vertices in G into two disjoint sets:

R = {u | the shortest path from u to v is even}
L = {u | the shortest path from u to v is odd}

We claim that no two vertices in L are adjacent. For contradiction, suppose there do exist
adjacent vertices u1,u2 ∈ L. Consider the tour consisting of:

• the shortest path from v to u1 (odd length)
• the edge (u1,u2) (length 1)
• the shortest path from u2 to v (odd length)

This tour has odd length, and contradicts our assumption that G has no tours of odd length.
This means that no two vertices in L are adjacent.

Similarly, we claim that no two vertices in R are adjacent. For contradiction, suppose there do
exist adjacent vertices u1,u2 ∈ R. Consider the tour consisting of:

CS 70, Spring 2024, HW 02 6

• the shortest path from v to u1 (even length)

• the edge (u1,u2) (length 1)

• the shortest path from u2 to v (even length)

This tour has odd length, and contradicts our assumption that G has no tours of odd length.
This means that no two vertices in R are adjacent.

We’ve just shown that there are no edges between two vertices in L, and no edges between
two vertices in R. If there are multiple connected components in G, the same partition can be
applied to all of the components. Together, this means that G is bipartite.

6 (Optional) Nothing Can Be Better Than Something

Note 4 In the stable matching problem, suppose that some jobs and candidates have hard requirements
and might not be able to just settle for anything. In other words, each job/candidate prefers being
unmatched rather than be matched with those below a certain point in their preference list. Let the
term "entity" refer to a candidate/job. A matching could ultimately have to be partial, i.e., some
entities would and should remain unmatched.

Consequently, the notion of stability here should be adjusted a little bit to capture the autonomy of
both jobs to unilaterally fire employees and/or employees to just walk away. A matching is stable
if

• there is no matched entity who prefers being unmatched over being with their current partner;

• there is no matched/filled job and unmatched candidate that would both prefer to be matched
with each other over their current status;

• there is no matched job and matched candidate that would both prefer to be matched with
each other over their current partners; and

• similarly, there is no unmatched job and matched candidate that would both prefer to be
matched with each other over their current status;

• there is no unmatched job and unmatched candidate that would both prefer to be with each
other over being unmatched.

(a) Prove that a stable pairing still exists in the case where we allow unmatched entities.

(HINT: You can approach this by introducing imaginary/virtual entities that jobs/candidates
“match” if they are unmatched. How should you adjust the preference lists of jobs/candidates,
including those of the newly introduced imaginary ones for this to work?)

(b) As you saw in the lecture, we may have different stable matchings. But interestingly, if an
entity remains unmatched in one stable matching, they must remain unmatched in any other
stable matching as well. Prove this fact by contradiction.

CS 70, Spring 2024, HW 02 7

https://www.eecs70.org/assets/pdf/notes/n4.pdf

Solution:

(a) We form an instance of the standard stable matching problem as follows. Following, the hint,
we introduce an imaginary mate, re, (let’s call it a robot) for each entity. Note that we introduce
one robot for each entity, i.e. there are as many robots as there are candidates+jobs. For
simplicity let us say each robot, re, is owned by the entity, e, we introduce it for.

Each robot, re, prefers its owner e, i.e. it puts its owner at the top of its preference list. The rest
of its preference list is arbitrary and includes all other owners and the robots of other types of
entities. An entity e of a robot, re puts it in their preference list exactly after the last entity they
are willing to match with. i.e. owners like their robots more than entities they are not willing
to match, but less than entities they like to match. The other robots can be placed in arbitrary
order in e’s list.

For this instance of the stable matching problem which we refer to as the robot instance, I, the
propose and reject algorithm will give us a stable matching, M.

To extract the desired partial matching, we simply remove all pairs in M with at least one robot
(two robots can match each other). We refer to each entity which is not matched as single. We
observe, an entity, e, will never be matched with another entity’s robot, re′ , because then e and
its robot, re, would form a rogue couple (re prefers e to other owners, and e prefers re more
than other robots). It remains to show this is a stable matching as specified in the problem as
follows:

• there is no matched entity, e, who prefers being unmatched over being with their current
partner since the e and re would form a rogue couple in M;

• there is no matched/filled job, j, and unmatched candidate, c, that would both prefer to be
matched with each other since otherwise j and c would form a rogue couple in M;

• there is no matched job j and matched candidate c that would both prefer to be matched
with each other over their current partners since then j and c would form a rogue couple
in M;

• similarly, there is no unmatched job, j, and matched candidate, c, that would both prefer
to be matched with each other over their current status since j and c would be a rogue
couple in M;

• there is no unmatched job, j, and unmatched candidate, c, that would both prefer to be
with each other over being unmatched since j and c would be a rogue couple in M.

Thus, the resulting partial matching is stable.

(b) We will perform proof by contradiction. Assume that there exists some job j1 who is paired
with a candidate c1 in stable pairing S and unpaired in stable pairing T . The stable pairing S
where j1 and c1 are paired means j1 and c1 both prefer to be with each other over being single.
Since T is a stable pairing and j1 is unpaired, c1 must be paired in T with a job j2 whom they
prefer over j1. (If c1 were unpaired or paired with a job they do not prefer over j1, then (j1,c1)

would be a rogue couple in T , which is a contradiction.)

CS 70, Spring 2024, HW 02 8

Since j2 is paired with c1 in T , it must be paired in S with some candidate c2 whom j2 prefers
over c1. This process continues (c2 must be paired with some j3 in T , j3 must be paired with
some c3 in S, etc.) with the pattern that (ci, ji) is in S and (ji,ci−1) is in T . At some time i, one
must encounter j1 in this process as there are a finite number of jobs. A this point (j1 = ji,ci−1)
is in T , which implies that j1 is matched in T .

A similar argument can be used for candidates.

This contradicts the assumption that j1 is unmatched in T . Since no job or candidate can be
paired in one stable pairing and unpaired in another, every job or candidate must be either
paired in all stable pairings or unpaired in all stable pairings.

CS 70, Spring 2024, HW 02 9

	Universal Preference
	Pairing Up
	Upper Bound
	Build-Up Error?
	Proofs in Graphs
	(Optional) Nothing Can Be Better Than Something

