
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair HW 03

1 Short Tree Proofs

Note 5 Let G = (V,E) be an undirected graph with |V | ≥ 1.

(a) Prove that every connected component in an acyclic graph is a tree.

(b) Suppose G has k connected components. Prove that if G is acyclic, then |E|= |V |− k.

(c) Prove that a graph with |V | edges contains a cycle.

Solution:

(a) Every connected component is connected, and acyclic because the graph is acyclic; by defini-
tion, this is a tree.

(b) Because each connected component is a tree, each connected component has |Vi| − 1 edges.
The total number of edges is thus ∑i(|Vi|−1) = |V |− k.

(c) An acyclic graph has |V |−k edges which cannot equal |V |, thus if a graph has |V | edges it has
a cycle.

2 Touring Hypercube

Note 5 In the lecture, you have seen that if G is a hypercube of dimension n, then

• The vertices of G are the binary strings of length n.

• u and v are connected by an edge if they differ in exactly one bit location.

A Hamiltonian tour of a graph is a sequence of vertices v0,v1, . . . ,vk such that:

• Each vertex appears exactly once in the sequence.

• Each pair of consecutive vertices is connected by an edge.

• v0 and vk are connected by an edge.

(a) Show that a hypercube has an Eulerian tour if and only if n is even.
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(b) Show that every hypercube has a Hamiltonian tour.

Solution:

(a) In the n-dimensional hypercube, every vertex has degree n. If n is odd, then by Euler’s Theorem
there can be no Eulerian tour. On the other hand, the hypercube is connected: we can get from
any one bit-string x to any other y by flipping the bits they differ in one at a time. Therefore,
when n is even, since every vertex has even degree and the graph is connected, there is an
Eulerian tour.

(b) By induction on n. When n = 1, there are two vertices connected by an edge; we can form a
Hamiltonian tour by walking from one to the other and then back.

Let n ≥ 1 and suppose the n-dimensional hypercube has a Hamiltonian tour. Let H be the
n+ 1-dimensional hypercube, and let Hb be the n-dimensional subcube consisting of those
strings with initial bit b.

By the inductive hypothesis, there is some Hamiltonian tour T on the n-dimensional hypercube.
Now consider the following tour in H. Start at an arbitrary vertex x0 in H0, and follow the tour
T except for the very last step to vertex y0 (so that the next step would bring us back to x0). Next
take the edge from y0 to y1 to enter cube H1. Next, follow the tour T in H1 backwards from
y1, except the very last step, to arrive at x1. Finally, take the step from x1 to x0 to complete
the tour. By assumption, the tour T visits each vertex in each subcube exactly once, so our
complete tour visits each vertex in the whole cube exactly once.

To build some intuition, here are the first few cases:

• n = 1: 0, 1

• n = 2: 00, 01, 11, 10
[Take the n = 1 tour in the 0-subcube (vertices with a 0 in front), move to the 1-subcube
(vertices with 1 in front), then take the tour backwards. We know 10 connects to 00 to
complete the tour.]

• n = 3: 000, 001, 011, 010, 110, 111, 101, 100
[Take the n = 2 tour in the 0-subcube, move to the 1-subcube, then take the tour back-
wards. We know 100 connects to 000 to complete the tour.]

The sequence produced with this method is known as a Gray code.

3 Planarity and Graph Complements

Note 5 Let G = (V,E) be an undirected graph. We define the complement of G as G = (V,E) where
E = {(i, j) | i, j ∈V, i ̸= j}−E; that is, G has the same set of vertices as G, but an edge e exists is
G if and only if it does not exist in G.

(a) Suppose G has v vertices and e edges. How many edges does G have?
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(b) Prove that for any graph with at least 13 vertices, G being planar implies that G is non-planar.

(c) Now consider the converse of the previous part, i.e., for any graph G with at least 13 vertices,
if G is non-planar, then G is planar. Construct a counterexample to show that the converse does
not hold.

Hint: Recall that if a graph contains a copy of K5, then it is non-planar. Can this fact be used
to construct a counterexample?

Solution:

(a) If G has v vertices, then there are a total of v(v−1)
2 edges that could possibly exist in the graph.

Since e of them appear in G, we know that the remaining v(v−1)
2 − e must appear in G.

(b) Since G is planar, we know that e ≤ 3v−6. Plugging this in to the answer from the previous
part, we have that G has at least v(v−1)

2 − (3v− 6) edges. Since v is at least 13, we have that
v(v−1)

2 ≥ v·12
2 = 6v, so G has at least 6v−3v+6 = 3v+6 edges. Since this is strictly more than

the 3v−6 edges allowed in a planar graph, we have that G must not be planar.

(c) The converse is not necessarily true. As a counterexample, suppose that G has exactly 13
vertices, of which five are all connected to each other and the remaining ten have no edges
incident to them. This means that G is non-planar, since it contains a copy of K5. However, G
also contains a copy of K5 (take any 5 of the 8 vertices that were isolated in G), so G is also
non-planar. Thus, it is possible for both G and G to be non-planar.

4 Modular Practice

Note 6 Solve the following modular arithmetic equations for x and y.

(a) 9x+5 ≡ 7 (mod 13).

(b) Show that 3x+12 ≡ 4 (mod 21) does not have a solution.

(c) The system of simultaneous equations 5x+4y ≡ 0 (mod 7) and 2x+ y ≡ 4 (mod 7).

(d) 132023 ≡ x (mod 12).

(e) 762 ≡ x (mod 11).

Solution:

(a) Subtract 5 from both sides to get:

9x ≡ 2 (mod 13).

Now since gcd(9,13) = 1, 9 has a (unique) inverse mod 13, and since 9×3= 27≡ 1 (mod 13)
the inverse is 3. So multiply both sides by 9−1 ≡ 3 (mod 13) to get:

x ≡ 6 (mod 13).
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(b) Notice that any number y ≡ 4 (mod 21) can be written as y = 4+ 21k (for some integer k).
Evaluating y mod 3, we get y ≡ 1 (mod 3).

Since the right side of the equation is 1 (mod 3), the left side must be as well. However,
3x+12 will never be 1 (mod 3) for any value of x. Thus, there is no possible solution.

(c) First, subtract the first equation from four times the second equation to get:

4(2x+ y)− (5x+4y)≡ 4(4)−0 (mod 7)
8x+4y−5x−4y ≡ 16 (mod 7)

3x ≡ 2 (mod 7)

Multiplying by 3−1 ≡ 5 (mod 7), we have x ≡ 10 ≡ 3 (mod 7).

Plugging this into the second equation, we have

2(3)+ y ≡ 4 (mod 7),

so the system has the solution x ≡ 3 (mod 7), y ≡ 5 (mod 7).

(d) We use the fact that 13 ≡ 1 (mod 12). Thus, we can rewrite the equation as

x ≡ 132023 ≡ 12023 ≡ 1 (mod 12).

(e) One way to solve exponentiation problems is to test values until one identifies a pattern.

71 ≡ 7 (mod 11)

72 ≡ 49 ≡ 5 (mod 11)

73 = 7 ·72 ≡ 7 ·5 ≡ 2 (mod 11)

74 = 7 ·73 ≡ 7 ·2 ≡ 3 (mod 11)

75 = 7 ·74 ≡ 7 ·3 ≡ 10 ≡−1 (mod 11)

We theoretically could continue this until we the sequence starts repeating. However, notice
that if 75 ≡−1 =⇒ 710 = (75)2 ≡ (−1)2 ≡ 1 (mod 11).

Similarly, 760 = (710)6 ≡ 16 ≡ 1 (mod 11). As a final step, we have 762 = 72 ·760 ≡ 72 ·1 =
49 ≡ 5 (mod 11).

5 Short Answer: Modular Arithmetic

Note 6 (a) What is the multiplicative inverse of n− 1 modulo n? (Your answer should be an expression
that may involve n)

(b) What is the solution to the equation 3x ≡ 6 (mod 17)?

(c) Let R0 = 0;R1 = 2;Rn = 4Rn−1 − 3Rn−2 for n ≥ 2. Is Rn ≡ 2 (mod 3) for n ≥ 1? (True or
False)
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(d) Given that (7)(53)−m = 1, what is the solution to 53x+ 3 ≡ 10 (mod m)? (Answer should
be an expression that is interpreted (mod m), and shouldn’t consist of fractions.)

Solution:

(a) The answer is n−1 (mod n). We can see this by noting that it is −1 (mod n), or more directly,
(n−1)(n−1)≡ n2 −2n+1 ≡ 1 (mod n).

(b) The answer is x ≡ 2 (mod 17). Muliply both sides by 6 (the multiplicative inverse of 3 modulo
17) and reduce.

(c) The statement is true. We can see this by taking the recursive formula modulo 3. This gives us
that Rn ≡ Rn−1 (mod 3), hence since R1 ≡ 2 (mod 3), every Ri must also be 2 modulo 3.

(d) Note that since 7 · 53 − m = 1, we can take both sides modulo m and find that 7 · 53 ≡ 1
(mod m), hence 7 is the inverse of 53 modulo m. Thus, we can solve the equation by subtract-
ing by 3 on both sides and multiplying by 7, giving that x ≡ 49 (mod m).

6 Wilson’s Theorem

Note 6 Wilson’s Theorem states the following is true if and only if p is prime:

(p−1)! ≡−1 (mod p).

Prove both directions (it holds if AND only if p is prime).

Hint for the if direction: Consider rearranging the terms in (p−1)! = 1 ·2 · · · · · (p−1) to pair up
terms with their inverses, when possible. What terms are left unpaired?

Hint for the only if direction: If p is composite, then it has some prime factor q. What can we say
about (p−1)! (mod q)?

Solution:

Direction 1: If p is prime, then the statement holds.

For the integers 1, · · · , p− 1, every number has an inverse. However, it is not possible to pair a
number off with its inverse when it is its own inverse. This happens when x2 ≡ 1 (mod p), or when
p | x2 − 1 = (x− 1)(x+ 1). Thus, p | x− 1 or p | x+ 1, so x ≡ 1 (mod p) or x ≡ −1 (mod p).
Thus, the only integers from 1 to p−1 inclusive whose inverse is the same as itself are 1 and p−1.

We reconsider the product (p−1)! = 1 ·2 · · · p−1. The product consists of 1, p−1, and pairs of
numbers with their inverse, of which there are p−1−2

2 = p−3
2 . The product of the pairs is 1 (since the

product of a number with its inverse is 1), so the product (p−1)! ≡ 1 · (p−1) ·1 ≡−1 (mod p),
as desired.

Direction 2: The expression holds only if p is prime (contrapositive: if p isn’t prime, then it doesn’t
hold).
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We will prove by contradiction that if some number p is composite, then (p−1)! ̸≡ −1 (mod p).
Suppose for contradiction that (p−1)! ≡−1 (mod p). Note that this means we can write (p−1)!
as p · k−1 for some integer k.

Since p isn’t prime, it has some prime factor q where 2 ≤ q ≤ n− 2, and we can write p = q · r.
Plug this into the expression for (p−1)! above, yielding us (p−1)! = (q · r)k−1 = q(rk)−1 =⇒
(p− 1)! ≡ −1 (mod q). However, we know q is a term in (p− 1)!, so (p− 1)! ≡ 0 (mod q).
Since 0 ̸≡ −1 (mod q), we have reached our contradiction.
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