
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair HW 04

1 Celebrate and Remember Textiles

Note 6 Mathematics and computing both owe an immense debt to textiles, where many key ideas origi-
nated.

Instructions for knitting patterns will tell you to begin by “casting on” the needle some multiple
of m plus r, where m is the number of stitches to create one repetition of the pattern and r is the
number of stitches needed for the two edges of the piece. For example, in the simple rib stitch
pattern below, the repeating pattern is of length m = 4, and you need r = 2 stitches for the edges.

+ × × ⃝ ⃝ +

Pattern of length 4

Edge stitch Edge stitch

Thus, to make the final piece wider, you can add as many multiples of the pattern of length 4 as
you like; for example, if you want to repeat the pattern 3 times, you need to cast on a total of
3m+ r = 3(4)+2 = 14 stitches (shown below).

+ × × ⃝ ⃝ × × ⃝ ⃝ × × ⃝ ⃝ +

Patterns of length 4

Edge stitch Edge stitch

You’ve decided to knit a 70-themed baby blanket as a gift for your cousin and want to incorporate
rows from three different stitch patterns with the following requirements:

• Alternating Link: Multiple of 7, plus 4

• Double Broken Rib: Multiple of 4, plus 2

• Swag: Multiple of 5, plus 2

You want to be able to switch between knitting these different patterns without changing the num-
ber of stitches on the needle, so you must use a number of stitches that simultaneously meets the
requirements of all three patterns.
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Find the smallest number of stitches you need to cast on in order to incorporate all three patterns
in your baby blanket.

Solution: Let x be the number of stitches we need to cast on. Using the Chinese Remainder
Theorem, we can write the following system of congruences:

x ≡ 4 (mod 7)
x ≡ 2 (mod 4)
x ≡ 2 (mod 5).

We have M = 7 ·4 ·5 = 140, r1 = 4, m1 = 7, b1 = M/m1 = 4 ·5 = 20, r2 = 3, m2 = 4, b2 = M/m2 =

7 · 5 = 35, and r3 = 2, m3 = 5, b3 = M/m3 = 7 · 4 = 28. We need to solve for the multiplicative
inverse of bi modulo mi for i ∈ {1,2,3}:

b1a1 ≡ 1 (mod m1)

20a1 ≡ 1 (mod 7)
6a1 ≡ 1 (mod 7)

→ a1 = 6,

b2a2 ≡ 1 (mod m2)

35a2 ≡ 1 (mod 4)
3a2 ≡ 1 (mod 4)

→ a2 = 3,

and

b3a3 ≡ 1 (mod m3)

28a3 ≡ 1 (mod 5)
3a3 ≡ 1 (mod 5)

→ a3 = 2.

Therefore,

x ≡ 6 ·20 ·4+2 ·35 ·3+2 ·28 ·2 (mod 140)
≡ 102 (mod 140),

so the smallest x that satisfies all three congruences is 102. Therefore we should cast on 102
stitches in order to be able to knit all three patterns into the blanket.

2 Euler’s Totient Theorem

Note 6
Note 7

Euler’s Totient Theorem states that, if n and a are coprime,

aφ(n) ≡ 1 (mod n)
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where φ(n) (known as Euler’s Totient Function) is the number of positive integers less than or
equal to n which are coprime to n (including 1). Note that this theorem generalizes Fermat’s Little
Theorem, since if n is prime, then φ(n) = n−1.

(a) Let the numbers less than n which are coprime to n be m1,m2, . . . ,mφ(n). Argue that the set

{am1,am2, . . . ,amφ(n)}

is a permutation of the set
{m1,m2, . . . ,mφ(n)}.

In other words, prove that

f : {m1,m2, . . . ,mφ(n)}→ {m1,m2, . . . ,mφ(n)}

is a bijection, where f (x) := ax (mod n).

(b) Prove Euler’s Theorem. (Hint: Recall the FLT proof.)

Solution:

(a) This problem mirrors the proof of Fermat’s Little Theorem, except now we work with the set
{m1,m2, · · · ,mφ(n)}.

Since mi and a are both coprime to n, so is a ·mi. Suppose a ·mi shared a common factor with
n, and WLOG, assume that it is a prime p. Then, either p|a or p|mi. In either case, p is a
common factor between n and one of a or mi, contradiction.

We now prove that f is injective. Suppose we have f (x) = f (y), so ax ≡ ay (mod n). Since a
has a multiplicative inverse (mod n), we see x ≡ y (mod n), thus showing that f is injective.

We continue to show that f is surjective. Take any y that is relatively prime to n. Then, we see
that f (a−1y) ≡ y (mod n), so therefore, there is an x such that f (x) = y. Furthermore, a−1y
(mod n) is relatively prime to n, since we are multiplying two numbers that are relatively prime
to n.

(b) Since both sets have the same elements, just in different orders, multiplying them together
gives

m1 ·m2 · . . . ·mφ(n) ≡ am1 ·am2 · . . . ·amφ(n) (mod n)

and factoring out the a terms,

m1 ·m2 · . . . ·mφ(n) ≡ aφ(n) (m1 ·m2 · . . . ·mφ(n)
)

(mod n).

Thus we have aφ(n) ≡ 1 (mod n).
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3 Sparsity of Primes

Note 6 A prime power is a number that can be written as pi for some prime p and some positive integer i.
So, 9 = 32 is a prime power, and so is 8 = 23. 42 = 2 ·3 ·7 is not a prime power.

Prove that for any positive integer k, there exists k consecutive positive integers such that none of
them are prime powers.

Hint: This is a Chinese Remainder Theorem problem. We want to find n such that (n+1), (n+2),
. . . , and (n+ k) are all not powers of primes. We can enforce this by saying that n+ 1 through
n+k each must have two distinct prime divisors. In your proof, you can choose these prime divisors
arbitrarily.

Solution:

We want to find n such that n+ 1,n+ 2,n+ 3, . . . ,n+ k are all not powers of primes. We can
enforce this by saying that n+ 1 through n+ k each must have two distinct prime divisors. So,
select 2k primes, p1, p2, . . . , p2k, and enforce the constraints

n+1 ≡ 0 (mod p1 p2)

n+2 ≡ 0 (mod p3 p4)

...
n+ i ≡ 0 (mod p2i−1 p2i)

...
n+ k ≡ 0 (mod p2k−1 p2k).

By Chinese Remainder Theorem, we can calculate the value of n, so this n must exist, and thus,
n+1 through n+ k are not prime powers.

What’s even more interesting here is that we could select any 2k primes we want!

4 RSA Practice

Note 7 Consider the following RSA scheme and answer the specified questions.

(a) Assume for an RSA scheme we pick 2 primes p = 5 and q = 11 with encryption key e = 9,
what is the decryption key d? Calculate the exact value.

(b) If the receiver gets 4, what was the original message?

(c) Encode your answer from part (b) to check its correctness.

Solution:

(a) The private key d is defined as the inverse of e (mod (p−1)(q−1)). Thus we need to compute
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9−1 mod (5−1)(11−1) = 9−1 mod 40. Compute egcd(40,9):

egcd(40,9) = egcd(9,4) [4 = 40 mod 9 = 40−4(9)]
= egcd(4,1) [1 = 9 mod 4 = 9−2(4)].

1 = 9−2(4).
1 = 9−2(40−4(9))
= 9−2(40)+8(9) = 9(9)−2(40).

We get −2(40)+9(9) = 1. So the inverse of 9 is 9. So d = 9.

(b) 4 is the encoded message. We can decode this with D(m) ≡ md ≡ 49 ≡ 14 (mod 55). Thus
the original message was 14.

(c) The answer from the second part was 14. To encode the number x we must compute xe mod N.
Thus, 149 ≡ 14 · (142)4 ≡ 14 · (312)2 ≡ 14 · (262) ≡ 14 · 16 ≡ 4 (mod 55). This verifies the
second part since the encoded message was supposed to be 4.

5 Tweaking RSA

Note 7 You are trying to send a message to your friend, and as usual, Eve is trying to decipher what the
message is. However, you get lazy, so you use N = p, and p is prime. Similar to the original
method, for any message x ∈ {0,1, . . . ,N −1}, E(x)≡ xe (mod N), and D(y)≡ yd (mod N).

(a) Show how you choose e and d in the encryption and decryption function, respectively. Prove
the correctness property: the message x is recovered after it goes through your new encryption
and decryption functions, E(x) and D(y).

(b) Can Eve now compute d in the decryption function? If so, by what algorithm?

(c) Now you wonder if you can modify the RSA encryption method to work with three primes
(N = pqr where p,q,r are all prime). Explain the modifications made to encryption and de-
cryption and include a proof of correctness showing that D(E(x)) = x.

Solution:

(a) Choose e such that it is coprime with p−1, and choose d ≡ e−1 (mod p−1).
We want to show x is recovered by E(x) and D(y), such that D(E(x)) = x.
In other words, xed ≡ x (mod p) for all x ∈ {0,1, . . . ,N −1}.
Proof: By construction of d, we know that ed ≡ 1 (mod p− 1). This means we can write
ed = k(p−1)+1, for some integer k, and xed = xk(p−1)+1.

• x is a multiple of p: Then this means x = 0, and indeed, xed ≡ 0 (mod p).
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• x is not a multiple of p: Then

xed ≡ xk(p−1)+1 (mod p)

≡ xk(p−1)x (mod p)

≡ 1kx (mod p)

≡ x (mod p),

by using FLT.

And for both cases, we have shown that x is recovered by D(E(x)).

(b) Since Eve knows N = p, and d ≡ e−1 (mod p−1), now she can compute d using EGCD.

(c) Let e be co-prime with (p−1)(q−1)(r−1). Give the public key: (N,e) and calculate d = e−1

(mod (p− 1)(q− 1)(r− 1)). People who wish to send me a secret, x, send y = xe (mod N).
We decrypt an incoming message, y, by calculating yd (mod N).

Does this work? We prove that xed − x ≡ 0 (mod N), and thus xed = x (mod N).
To prove that xed − x ≡ 0 (mod N), we factor out the x to get
x · (xed−1 −1) = x · (xk(p−1)(q−1)(r−1)+1−1 −1) because ed ≡ 1 (mod (p−1)(q−1)(r−1)).

We now show that x · (xk(p−1)(q−1)(r−1)−1) is divisible by p, q, and r. Thus, it is divisible by
N, and xed − x ≡ 0 (mod N).
To prove that it is divisible by p:

• if x is divisible by p, then the entire thing is divisible by p.

• if x is not divisible by p, then that means we can use FLT on the inside to show that
(xp−1)k(q−1)(r−1)−1 ≡ 1−1 ≡ 0 (mod p). Thus it is divisible by p.

To prove that it is divisible by q:

• if x is divisible by q, then the entire thing is divisible by q.

• if x is not divisible by q, then that means we can use FLT on the inside to show that
(xq−1)k(p−1)(r−1)−1 ≡ 1−1 ≡ 0 (mod q). Thus it is divisible by q.

To prove that it is divisible by r:

• if x is divisible by r, then the entire thing is divisible by r.

• if x is not divisible by r, then that means we can use FLT on the inside to show that
(xr−1)k(p−1)(q−1)−1 ≡ 1−1 ≡ 0 (mod r). Thus it is divisible by r.
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