1 Equivalent Polynomials

Note 7
Note 8

This problem is about polynomials with coefficients in $\operatorname{GF}(p)$ for some prime $p \in \mathbb{N}$. We say that two such polynomials f and g are equivalent if $f(x) \equiv g(x)(\bmod p)$ for every $x \in \mathrm{GF}(p)$.
(a) Show that $f(x)=x^{p-1}$ and $g(x)=1$ are not equivalent polynomials under $\operatorname{GF}(p)$.
(b) Use Fermat's Little Theorem to find a polynomial with degree strictly less than 5 that is equivalent to $f(x)=x^{5}$ over $\operatorname{GF}(5)$; then find a polynomial with degree strictly less than 11 that is equivalent to $g(x)=4 x^{70}+9 x^{11}+3$ over GF (11).
(c) $\operatorname{In} \operatorname{GF}(p)$, prove that whenever $f(x)$ has degree $\geq p$, it is equivalent to some polynomial $\tilde{f}(x)$ with degree $<p$.

Solution:

(a) For f and g to be equivalent, they must satisfy $f(x) \equiv g(x)(\bmod p)$ for all values of x, including zero. But $f(0) \equiv 0(\bmod p)$ and $g(0) \equiv 1(\bmod p)$, so they are not equivalent.
(b) Fermat's Little Theorem says that for any nonzero integer a and any prime number $p, a^{p-1} \equiv 1$ $\bmod p$. We're allowed to multiply through by a, so the theorem is equivalent to saying that $a^{p} \equiv a \bmod p$; note that this is true even when $a=0$, since in that case we just have $0^{p} \equiv 0$ $(\bmod p)$.
The problem asks for a polynomial $\tilde{f}(x)$, different from $f(x)$, with the property that $\tilde{f}(a) \equiv a^{5}$ mod 5 for any integer a. Directly using the theorem, $\tilde{f}(x)=x$ will work. We can do something similar with $g(x)=4 x^{70}+9 x^{11}+3$ modulo 11 ; since $x^{11} \equiv x(\bmod 11)$, we repeatedly substitute x^{11} with x, effectively reducing the exponent by 10 . We can only do this as long as the exponent remains greater than or equal to 11 , so we end up with $\tilde{g}(x)=4 x^{10}+9 x+3$.
(c) One proof uses Fermat's Little Theorem. As a warm-up, let $d \geq p$; we'll find a polynomial equivalent to x^{d}. For any integer, we know

$$
\begin{aligned}
a^{d} & =a^{d-p} a^{p} \\
& \equiv a^{d-p} a \quad(\bmod p) \\
& \equiv a^{d-p+1} \quad(\bmod p) .
\end{aligned}
$$

In other words x^{d} is equivalent to the polynomial $x^{d-(p-1)}$. If $d-(p-1) \geq q$, we can show in the same way that x^{d} is equivalent to $x^{d-2(p-1)}$. Since we subtract $p-1$ every time, the
sequence $d, d-(p-1), d-2(p-1), \ldots$ must eventually be smaller than p. Now if $f(x)$ is any polynomial with degree $\geq p$, we can apply this same trick to every x^{k} that appears for which $k \geq p$.
Another proof uses Lagrange interpolation. Let $f(x)$ have degree $\geq p$. By Lagrange interpolation, there is a unique polynomial $\tilde{f}(x)$ of degree at most $p-1$ passing through the points $(0, f(0)),(1, f(1)),(2, f(2)), \ldots,(p-1, f(p-1))$, and we know it must be equivalent to $f(x)$ because f also passes through the same p points.

2 Secret Sharing

Suppose the Oral Exam questions are created by 2 TAs and 3 Readers. The answers are all encrypted, and we know that:

- Two TAs together should be able to access the answers
- Three Readers together should be able to access the answers
- One TA and one Reader together should also be able to access the answers
- One TA by themself or two Readers by themselves should not be able to access the answers.

Design a Secret Sharing scheme to make this work.

Solution:

Solution 1 We can use a degree 2 polynomial, which is uniquely determined by 3 points. Evaluate the polynomial at 7 points, and distribute a point to each Reader and 2 points to each TA. Then, all possible combinations will have at least 3 points to recover the answer key.

Basically, the point of this problem is to assign different weight to different class of people. If we give one share to everyone, then 2 Readers can also recover the secret and the scheme is broken.
Solution 2 We construct three polynomials, one for each way of recovering the answer key:

- A degree 1 polynomial for recovering with two TAs, evaluated at 2 points. Distribute a point to each TA.
- A degree 2 polynomial for recovering with three readers, evaluated at 3 points. Distribute a point to each Reader.
- A degree 1 polynomial for recovering with one TA + one reader. Evaluate this polynomial at 2 points, and distribute one point to all TAs and one point to all readers.

All combinations can then use the corresponding polynomial to recover the answer key.

3 One Point Interpolation

Note 8
Suppose we have a polynomial $f(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}$.
(a) Can we determine $f(x)$ with k points? If so, provide a set of inputs $x_{0}, x_{1}, \ldots, x_{k-1}$ such that knowing points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{k-1}, f\left(x_{k-1}\right)\right)$ allows us to uniquely determine $f(x)$, and show how $f(x)$ can be determined from such points. If not, provide a proof of why this is not possible.
(b) Now, assume each coefficient is an integer satisfying $0 \leq c_{i}<100 \quad \forall i \in[0, k-1]$. Can we determine $f(x)$ with one point? If so, provide an input x_{*} such that knowing the point $\left(x_{*}, f\left(x_{*}\right)\right)$ allows us to uniquely determine $f(x)$, and show how $f(x)$ can be determined from this point. If not, provide a proof of why this is not possible.

Solution:

(a) Yes. Since the leading coefficient is 1 , we only need to find the k remaining coefficients $c_{0}, c_{1}, \ldots, c_{k-1}$ to determine $f(x)$. This can be done with any k distinct points.
For example, suppose we know the points $(0, f(0)),(1, f(1)), \ldots,(k-1, f(k-1))$. We can then write the degree $k-1$ polynomial

$$
g(x)=c_{k-1} x^{k-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}=f(x)-x^{k}
$$

which can be determined via Lagrange interpolation on $(0, f(0)),(1, f(1)-1),\left(2, f(2)-2^{k}\right)$, $\ldots,\left(k-1, f(k-1)-(k-1)^{k}\right)$, uniquely yielding our desired coefficients $c_{0}, c_{1}, \ldots, c_{k-1}$.
(b) Yes. We can express each nonnegative two-digit integer $c_{i}=10 d_{2 i+1}+d_{2 i}$ for digits $d_{i} \in[0,9]$. Using $x_{*}=100$,

$$
\begin{aligned}
f(100) & =100^{k}+c_{k-1} 100^{k-1}+\cdots+c_{2} 100^{2}+c_{1} 100+c_{0} \\
& =10^{2 k}+\left(10 d_{2 k-1}+d_{2 k-2}\right) 10^{2 k-2}+\cdots+\left(10 d_{5}+d_{4}\right) 10^{4}+\left(10 d_{3}+d_{2}\right) 10^{2}+\left(10 d_{1}+d_{0}\right) \\
& =10^{2 k}+10^{2 k-1} d_{2 k-1}+10^{2 k-2} d_{2 k-2}+\cdots+10^{5} d_{5}+10^{4} d_{4}+10^{3} d_{3}+10^{2} d_{2}+10 d_{1}+d_{0}
\end{aligned}
$$

Thus, the rightmost $2 k-1$ digits of $f(100)$, from right to left, are $d_{0}, d_{1}, \ldots, d_{2 k-1}$; we can then determine our desired coefficients $c_{i}=10 d_{2 i+1}+d_{2 i}$.

4 Error-Correcting Codes

(a) Recall from class the error-correcting code for erasure errors, which protects against up to k lost packets by sending a total of $n+k$ packets (where n is the number of packets in the original message). Often the number of packets lost is not some fixed number k, but rather a fraction of the number of packets sent. Suppose we wish to protect against a fraction α of lost packets (where $0<\alpha<1$). At least how many packets do we need to send (as a function of n and α)?
(b) Repeat part (a) for the case of general errors.

Solution:

(a) Suppose we send a total of m packets (where m is to be determined). Since at most a fraction α of these are lost, the number of packets received is at least $(1-\alpha) m$. But in order to reconstruct the polynomial used in transmission, we need at least n packets. Hence it is sufficient to have $(1-\alpha) m \geq n$, which can be rearranged to give $m \geq n /(1-\alpha)$.
(b) Suppose we send a total of $m=n+2 k$ packets, where k is the number of errors we can guard against. The number of corrupted packets is at most αm, so we need $k \geq \alpha m$. Hence $m \geq$ $n+2 \alpha m$. Rearranging gives $m \geq n /(1-2 \alpha)$.
Note: Recovery in this case is impossible if $\alpha \geq 1 / 2$.

5 Alice and Bob

(a) Alice decides that instead of encoding her message as the values of a polynomial, she will encode her message as the coefficients of a degree 2 polynomial $P(x)$. For her message [m_{1}, m_{2}, m_{3}], she creates the polynomial $P(x)=m_{1} x^{2}+m_{2} x+m_{3}$ and sends the five packets $(0, P(0)),(1, P(1)),(2, P(2)),(3, P(3))$, and $(4, P(4))$ to Bob. However, one of the packet y-values (one of the $P(i)$ terms; the second attribute in the pair) is changed by Eve before it reaches Bob. If Bob receives

$$
(0,1),(1,3),(2,0),(3,1),(4,0)
$$

and knows Alice's encoding scheme and that Eve changed one of the packets, can he recover the original message? If so, find it as well as the x-value of the packet that Eve changed. If he can't, explain why. Work in mod 7. Also, feel free to use a calculator or online systems of equations solver, but make sure it can work under mod 7 .
(b) Bob gets tired of decoding degree 2 polynomials. He convinces Alice to encode her messages on a degree 1 polynomial. Alice, just to be safe, continues to send 5 points on her polynomial even though it is only degree 1 . She makes sure to choose her message so that it can be encoded on a degree 1 polynomial. However, Eve changes two of the packets. Bob receives $(0,5),(1,7),(2, x),(3,5),(4,0)$. If Alice sent $(0,5),(1,7),(2,9),(3,-2),(4,0)$, for what values of x will Bob not uniquely be able to determine Alice's message? Assume that Bob knows Eve changed two packets. Work in mod 13. Again, feel free to use a calculator or graphing calculator software.
(c) Alice wants to send a length n message to Bob. There are two communication channels available to her: Channel X and Channel Y. Only 6 packets can be sent through channel X. Similarly, Channel Y will only deliver 6 packets, but it will also corrupt (change the value) of one of the delivered packets. Using each of the two channels once, what is the largest message length n such that Bob so that he can always reconstruct the message?

Solution:

(a) We can use Berlekamp and Welch. We have: $Q(x)=P(x) E(x)$. $E(x)$ has degree 1 since we know we have at most 1 error. $Q(x)$ is degree 3 since $P(x)$ is degree 2 . We can write a system of linear equations and solve for the coefficients of $Q(x)=a x^{3}+b x^{2}+c x+d$ and $E(x)=(x-e)$ by writing the equation $Q(i)=r_{i} \cdot E(i)$ for $0 \leq i \leq 4$, where r_{i} is the ith received point.

$$
\begin{aligned}
d & =1(0-e) \\
a+b+c+d & =3(1-e) \\
8 a+4 b+2 c+d & =0(2-e) \\
27 a+9 b+3 c+d & =1(3-e) \\
64 a+16 b+4 c+d & =0(4-e)
\end{aligned}
$$

Since we are working in $\bmod 7$, this is equivalent to:

$$
\begin{aligned}
d & =-e \\
a+b+c+d & =3-3 e \\
a+4 b+2 c+d & =0 \\
6 a+2 b+3 c+d & =3-e \\
a+2 b+4 c+d & =0
\end{aligned}
$$

Solving yields:

$$
Q(x)=x^{3}+5 x^{2}+5 x+4, E(x)=x-3
$$

To find $P(x)$ we divide $Q(x)$ by $E(x)$ and get $P(x)=x^{2}+x+1$. So Alice's message is $m_{1}=$ $1, m_{2}=1, m_{3}=1$. The x-value of the packet Eve changed is 3 .
Alternative solution: Since we have 5 points, we have to find a polynomial of degree 2 that goes through 4 of those points. The point that the polynomial does not go through will be the packet that Eve changed. Since 3 points uniquely determine a polynomial of degree 2, we can pick 3 points and check if it goes through a 4th point. (It may be the case that we need to try all sets of 3 points.)
We pick the points $(1,3),(2,0),(4,0)$. Lagrange interpolation can be used to create the polynomial but we can see that for the polynomial that goes through these 3 points, it has 0 s at $x=2$ and $x=4$. Thus the polynomial is $k(x-2)(x-4)=k\left(x^{2}-6 x+8\right)(\bmod 7) \equiv k\left(x^{2}+x+1\right)$ $(\bmod 7)$. We find $k \equiv 1$ by plugging in the point $(1,3)$, so our polynomial is $x^{2}+x+1$. We then check to see if this polynomial goes through one of the 2 points that we didn't use. Plugging in 0 for x, we get 1 . The packet that Eve changed is the point that our polynomial does not go through which has x-value 3 . Alice's original message was $m_{1}=1, m_{2}=1, m_{3}=1$.
(b) Since Bob knows that Eve changed 2 of the points, the 3 remaining points will still be on the degree 1 polynomial that Alice encoded her message on. Thus if Bob can find a degree 1 polynomial that passes through at least 3 of the points that he receives, he will be able to
uniquely recover Eve's message. The only time that Bob cannot uniquely determine Alice's message is if there are 2 polynomials with degree 1 that pass through 3 of the 5 points that he receives. Since we are working with degree 1 polynomials, we can plot the points that Bob receives and then see which values of x will cause 2 sets of 3 points to fall on a line. $(0,5),(1,7),(4,0)$ already fall on a line. If $x=6,(1,7),(2,6),(3,5)$ also falls on a line. If $x=5,(0,5),(2,5),(3,5)$ also falls on a line. If $x=9,(0,5),(2,9),(4,0)$ falls on the original line, so here Bob can decode the message. If $x=10,(2,10),(3,5),(4,0)$ also falls on a line. So if $x=6,5,10$, Bob will not be able to uniquely determine Alice's message.
(c) Channel X can send 6 packets, so the first 6 characters of the message can be send through Channel X. Channel Y can send 6 packets, but 1 will be corrupted, thus only a message of length 4 can be sent. Thus, a total of $m=6+4=10$ characters can effectively sent.

