
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Seshia, Sinclair HW 14

1 Rahil’s Dilemma

Note 22 Youngmin and Rahil decided to play a game: A fair coin is flipped until either the last two flips
were all heads - then Youngmin wins, or the last three flips were all tails - then Rahil wins. Compute
the probability that Rahil wins.

Solution: The corresponding Markov chain is: states are X = { /0,H,HH,T,T T,T T T} and the
transition probability matrix is 

0 1/2 0 1/2 0 0
0 0 1/2 1/2 0 0
0 0 1 0 0 0
0 1/2 0 0 1/2 0
0 1/2 0 0 0 1/2
0 0 0 0 0 1


Let α(i) denote the probability of Rahil winning, that is, reaching state T T T before HH. Then,
the first-step equations for α are

α(T T T ) = 1
α(HH) = 0

α(T T ) =
1
2
(α(T T T )+α(H)) =

1
2
(1+α(H))

α(T ) =
1
2
(α(T T )+α(H))

α(H) =
1
2
(α(T )+α(HH)) =

1
2

α(T )

α( /0) =
1
2
(α(T )+α(H))
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Solving these equations, we get

α(T T ) =
3
5

α(T ) =
2
5

α(H) =
1
5

α( /0) =
3

10

Hence, Rahil wins with probability 3
10 .

2 A Bit of Everything
Suppose that X0,X1, . . . is a Markov chain with finite state space S = {1,2, . . . ,n}, where n > 2,
and transition matrix P. Suppose further that

P(1, i) =
1
n

for all states i and

P( j, j−1) = 1 for all states j ̸= 1,

with P(i, j) = 0 everywhere else.

(a) Prove that this Markov chain is irreducible and aperiodic.

(b) Suppose you start at state 1. What is the distribution of T, where T is the number of transitions
until you leave state 1 for the first time?

(c) Again starting from state 1, what is the expected number of transitions until you reach state n
for the first time?

(d) Again starting from state 1, what is the probability you reach state n before you reach state 2?

(e) Compute the stationary distribution of this Markov chain.

Solution:

(a) For any two states i and j, we can consider the path (i, i− 1, . . . ,2,1, j), which has nonzero
probability of occurring. Thus, this chain is irreducible. To see that it is aperiodic, observe that
d(1) = 1, as we have self-loop from state 1 to itself.

(b) At any given transition, we leave state 1 with probability with probability n−1
n , independently

of any previous transition. Thus, the distribution is Geometric, with parameter n−1
n .
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(c) Suppose that β (i) is the expected number of transitions necessary to reach state n for the first
time, starting from state i. We have the following first step equations:

β (1) = 1+
n

∑
j=1

1
n

β ( j),

β (i) = 1+β (i−1) for 1 < i < n, and
β (n) = 0.

We can simplify the second recurrence to

β (i) = i−1+β (1) for 1 < i < n.

Substituting this simplified recurrence into the first equation, we get that

β (1)= 1+
1
n

n−1

∑
i=1

(i−1+β (1))= 1+
1
n

n−1

∑
i=1

(i−1)+
1
n

n−1

∑
i=1

β (1)= 1+
(n−2)(n−1)

2n
+

n−1
n

β (1),

which we can solve to get that

β (1) = n+
1
2
(n−1)(n−2) .

(d) Suppose that α(i) is the probability that we reach state n before we reach state 2, starting from
state i. One immediate observation we can make is that from any state i in {2, . . . ,n−1}, we
are guaranteed to see state 2 before state n, as we can only take the path (i, i− 1, . . . ,2,1).
Hence, α(i) = 0 if i ∈ {2, . . . ,n−1}. Moreover, α(n) = 1, so

α(1) =
n

∑
i=1

1
n

α(i) =
1
n

α(1)+
1
n
,

hence α(1) =
1

n−1
.

(e) We have the balance equations

π(i) =
1
n

π(1)+π(i+1) if i ̸= n, and

π(n) =
1
n

π(1).

We can collapse the first recurrence to

π(i) =
n− i

n
π(1)+π(n) =

n− i+1
n

π(1),

so we can express each stationary probability in terms of the stationary probability of state 1.
We can finish by using the normalization equation:

π(1)+π(2)+ · · ·+π(n) = 1 =⇒ 1
n

π(1)
n

∑
i=1

n− i+1 = 1.
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The last sum can be rearranged to be the sum of the integers from 1 up to n, so we get that

π(1) =
2

n+1
=⇒ π =

2
n(n+1)

[
n n−1 · · · 1

]
.

3 Playing Blackjack

Note 22 Suppose you start with $1, and at each turn, you win $1 with probability p, or lose $1 with proba-
bility 1− p. You will continually play games of Blackjack until you either lose all your money, or
you have a total of n dollars.

(a) Formulate this problem as a Markov chain.

(b) Let α(i) denote the probability that you end the game with n dollars, given that you started
with i dollars.

Notice that for 0 < i < n, we can write α(i+1)−α(i) = k (α(i)−α(i−1)). Find k.

(c) Using part (b), find α(i), where 0 ≤ i ≤ n. (You will need to split into two cases: p = 1
2 or

p ̸= 1
2 .)

Hint: Try to apply part (b) iteratively, and look at a telescoping sum to write α(i) in terms of
α(1). The formula for the sum of a finite geometric series may be helpful when looking at the
case where p ̸= 1

2 :
m

∑
k=0

ak =
1−am+1

1−a
.

Lastly, it may help to use the value of α(n) to find α(1) for the last few steps of the calculation.

(d) As n → ∞, what happens to the probability of ending the game with n dollars, given that you
start with i dollars, with the following values of p?

(i) p > 1
2

(ii) p = 1
2

(iii) p < 1
2

Solution:

(a) We have the following state transition diagram:

0 1 2 · · · n−2 n−1 n1 1

p p p p p

1− p1− p1− p1− p1− p
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In particular, we have n+ 1 states, {0,1,2, . . . ,n}, where the transition probability from i to
i+1 is p, and the transition probability from i to i−1 is 1− p. The transition probabilities for
i = 0 and i = n are edge cases, where we stay in place with probability 1.

(b) If we start with i dollars, this means that we start at state i. The next transition can either be to
state i+1 with probability p, or to state i−1 with probability 1− p. This means that we have

α(i) = pα(i+1)+(1− p)α(i−1).

Here, a trick is to expand α(i) = pα(i)+(1− p)α(i). Substituting this in, we can rewrite

pα(i)+(1− p)α(i) = pα(i+1)+(1− p)α(i−1)
(1− p)(α(i)−α(i−1)) = p(α(i+1)−α(i))

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))

(c) Now that we have a relationship between α(i+ 1)−α(i) and α(i)−α(i− 1), notice that we
can iteratively apply the recurrence to get

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))

=

(
1− p

p

)2

(α(i−1)−α(i−2))

...

=

(
1− p

p

)i

(α(1)−α(0))

=

(
1− p

p

)i

α(1)

since α(0) = 0 (once we lose all our money, we stop and can never reach n).

Further, notice that we have the telescoping sum

[α(i)−α(i−1)]+ [α(i−1)−α(i−2)]+ · · ·+[α(1)−α(0)] = α(i)−α(0) = α(i).

This means that we have the summation

α(i) =
i−1

∑
k=0

(α(k+1)−α(k))

=
i−1

∑
k=0

(
1− p

p

)k

α(1)

= α(1)
i−1

∑
k=0

(
1− p

p

)k

= α(1) ·
1−

(
1−p

p

)i

1− 1−p
p

CS 70, Spring 2024, HW 14 5



[Note that if p= 1
2 , the last step is not valid; in fact, since 1−p

p = 1, this means that α(i)= iα(1).
We’ll come back to this case later.]

The previous formula applies for all 0 < i ≤ n, so we can let i = n and simplify to find α(1):

1 = α(n) = α(1) ·
1−

(
1−p

p

)n

1− 1−p
p

1− 1−p
p

1−
(

1−p
p

)n = α(1)

Plugging this back in for α(i), we have

α(i) =
1− 1−p

p

1−
(

1−p
p

)n ·
1−

(
1−p

p

)i

1− 1−p
p

=
1−

(
1−p

p

)i

1−
(

1−p
p

)n .

Going back to the case where p = 1
2 , we saw that the summation simplifies to α(i) = iα(1).

Since α(n) = 1, this means that 1 = nα(1), or α(1) = 1
n . This means that we have

α(i) = iα(1) =
i
n
.

Together, we have the following formula for any 0 ≤ i ≤ n:

α(i) =


1−

(
1−p

p

)i

1−
(

1−p
p

)n p ̸= 1
2

i
n p = 1

2

.

(d) (i) If p > 1
2 , then 1−p

p < 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator vanishes.

This means that all we’re left with is the numerator, and as such

lim
n→∞

α(i) = 1−
(

1− p
p

)i

.

(ii) If p = 1
2 , then we know that α(i) = i

n . As n → ∞, this fraction goes to 0, and we have

lim
n→∞

α(i) = 0.

(iii) If p < 1
2 , then 1−p

p > 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator blows up.

This means that the denominator tends to −∞, while the numerator remains bounded for
any fixed i. This means that the entire fraction tends to 0, i.e,

lim
n→∞

α(i) = 0.

Note that this problem shows that, even in the case of a fair game (i.e., p = 1
2 ), the probability that

a gambler wins $n before going broke tends to zero as n → ∞. This is one version of the so-called
“Gambler’s Ruin” problem. Only in the case where p > 1

2 , i.e., when the game is strictly in the
gambler’s favor, does the gambler come out on top with positive probability.
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