1 Rahil's Dilemma

Note 22 Youngmin and Rahil decided to play a game: A fair coin is flipped until either the last two flips were all heads - then Youngmin wins, or the last three flips were all tails - then Rahil wins. Compute the probability that Rahil wins.

Solution: The corresponding Markov chain is: states are $\mathscr{X}=\{\emptyset, H, H H, T, T T, T T T\}$ and the transition probability matrix is

$$
\left[\begin{array}{cccccc}
0 & 1 / 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Let $\alpha(i)$ denote the probability of Rahil winning, that is, reaching state $T T T$ before $H H$. Then, the first-step equations for α are

$$
\begin{aligned}
\alpha(T T T) & =1 \\
\alpha(H H) & =0 \\
\alpha(T T) & =\frac{1}{2}(\alpha(T T T)+\alpha(H))=\frac{1}{2}(1+\alpha(H)) \\
\alpha(T) & =\frac{1}{2}(\alpha(T T)+\alpha(H)) \\
\alpha(H) & =\frac{1}{2}(\alpha(T)+\alpha(H H))=\frac{1}{2} \alpha(T) \\
\alpha(\emptyset) & =\frac{1}{2}(\alpha(T)+\alpha(H))
\end{aligned}
$$

Solving these equations, we get

$$
\begin{aligned}
\alpha(T T) & =\frac{3}{5} \\
\alpha(T) & =\frac{2}{5} \\
\alpha(H) & =\frac{1}{5} \\
\alpha(\emptyset) & =\frac{3}{10}
\end{aligned}
$$

Hence, Rahil wins with probability $\frac{3}{10}$.

2 A Bit of Everything

Suppose that X_{0}, X_{1}, \ldots is a Markov chain with finite state space $S=\{1,2, \ldots, n\}$, where $n>2$, and transition matrix P. Suppose further that

$$
\begin{aligned}
P(1, i)=\frac{1}{n} & \text { for all states } i \text { and } \\
P(j, j-1)=1 & \text { for all states } j \neq 1,
\end{aligned}
$$

with $P(i, j)=0$ everywhere else.
(a) Prove that this Markov chain is irreducible and aperiodic.
(b) Suppose you start at state 1 . What is the distribution of T, where T is the number of transitions until you leave state 1 for the first time?
(c) Again starting from state 1 , what is the expected number of transitions until you reach state n for the first time?
(d) Again starting from state 1 , what is the probability you reach state n before you reach state 2 ?
(e) Compute the stationary distribution of this Markov chain.

Solution:

(a) For any two states i and j, we can consider the path $(i, i-1, \ldots, 2,1, j)$, which has nonzero probability of occurring. Thus, this chain is irreducible. To see that it is aperiodic, observe that $d(1)=1$, as we have self-loop from state 1 to itself.
(b) At any given transition, we leave state 1 with probability with probability $\frac{n-1}{n}$, independently of any previous transition. Thus, the distribution is Geometric, with parameter $\frac{n-1}{n}$.
(c) Suppose that $\beta(i)$ is the expected number of transitions necessary to reach state n for the first time, starting from state i. We have the following first step equations:

$$
\begin{aligned}
\beta(1) & =1+\sum_{j=1}^{n} \frac{1}{n} \beta(j), \\
\beta(i) & =1+\beta(i-1) \quad \text { for } 1<i<n, \text { and } \\
\beta(n) & =0 .
\end{aligned}
$$

We can simplify the second recurrence to

$$
\beta(i)=i-1+\beta(1) \text { for } 1<i<n
$$

Substituting this simplified recurrence into the first equation, we get that
$\beta(1)=1+\frac{1}{n} \sum_{i=1}^{n-1}(i-1+\beta(1))=1+\frac{1}{n} \sum_{i=1}^{n-1}(i-1)+\frac{1}{n} \sum_{i=1}^{n-1} \beta(1)=1+\frac{(n-2)(n-1)}{2 n}+\frac{n-1}{n} \beta(1)$,
which we can solve to get that

$$
\beta(1)=n+\frac{1}{2}(n-1)(n-2) \text {. }
$$

(d) Suppose that $\alpha(i)$ is the probability that we reach state n before we reach state 2 , starting from state i. One immediate observation we can make is that from any state i in $\{2, \ldots, n-1\}$, we are guaranteed to see state 2 before state n, as we can only take the path $(i, i-1, \ldots, 2,1)$. Hence, $\alpha(i)=0$ if $i \in\{2, \ldots, n-1\}$. Moreover, $\alpha(n)=1$, so

$$
\alpha(1)=\sum_{i=1}^{n} \frac{1}{n} \alpha(i)=\frac{1}{n} \alpha(1)+\frac{1}{n},
$$

hence $\alpha(1)=\frac{1}{n-1}$.
(e) We have the balance equations

$$
\begin{aligned}
& \pi(i)=\frac{1}{n} \pi(1)+\pi(i+1) \quad \text { if } i \neq n, \text { and } \\
& \pi(n)=\frac{1}{n} \pi(1) .
\end{aligned}
$$

We can collapse the first recurrence to

$$
\pi(i)=\frac{n-i}{n} \pi(1)+\pi(n)=\frac{n-i+1}{n} \pi(1),
$$

so we can express each stationary probability in terms of the stationary probability of state 1 . We can finish by using the normalization equation:

$$
\pi(1)+\pi(2)+\cdots+\pi(n)=1 \Longrightarrow \frac{1}{n} \pi(1) \sum_{i=1}^{n} n-i+1=1 .
$$

The last sum can be rearranged to be the sum of the integers from 1 up to n, so we get that

$$
\pi(1)=\frac{2}{n+1} \Longrightarrow \pi=\frac{2}{\frac{2}{n(n+1)}\left[\begin{array}{llll}
n & n-1 & \cdots & 1
\end{array}\right] . \text {. } 10 .} \begin{array}{lll}
\\
\hline
\end{array}
$$

3 Playing Blackjack

Note 22

Suppose you start with $\$ 1$, and at each turn, you win $\$ 1$ with probability p, or lose $\$ 1$ with probability $1-p$. You will continually play games of Blackjack until you either lose all your money, or you have a total of n dollars.
(a) Formulate this problem as a Markov chain.
(b) Let $\alpha(i)$ denote the probability that you end the game with n dollars, given that you started with i dollars.
Notice that for $0<i<n$, we can write $\alpha(i+1)-\alpha(i)=k(\alpha(i)-\alpha(i-1))$. Find k.
(c) Using part (b), find $\alpha(i)$, where $0 \leq i \leq n$. (You will need to split into two cases: $p=\frac{1}{2}$ or $p \neq \frac{1}{2}$.)
Hint: Try to apply part (b) iteratively, and look at a telescoping sum to write $\alpha(i)$ in terms of $\alpha(1)$. The formula for the sum of a finite geometric series may be helpful when looking at the case where $p \neq \frac{1}{2}$:

$$
\sum_{k=0}^{m} a^{k}=\frac{1-a^{m+1}}{1-a} .
$$

Lastly, it may help to use the value of $\alpha(n)$ to find $\alpha(1)$ for the last few steps of the calculation.
(d) As $n \rightarrow \infty$, what happens to the probability of ending the game with n dollars, given that you start with i dollars, with the following values of p ?
(i) $p>\frac{1}{2}$
(ii) $p=\frac{1}{2}$
(iii) $p<\frac{1}{2}$

Solution:

(a) We have the following state transition diagram:

In particular, we have $n+1$ states, $\{0,1,2, \ldots, n\}$, where the transition probability from i to $i+1$ is p, and the transition probability from i to $i-1$ is $1-p$. The transition probabilities for $i=0$ and $i=n$ are edge cases, where we stay in place with probability 1.
(b) If we start with i dollars, this means that we start at state i. The next transition can either be to state $i+1$ with probability p, or to state $i-1$ with probability $1-p$. This means that we have

$$
\alpha(i)=p \alpha(i+1)+(1-p) \alpha(i-1)
$$

Here, a trick is to expand $\alpha(i)=p \alpha(i)+(1-p) \alpha(i)$. Substituting this in, we can rewrite

$$
\begin{aligned}
p \alpha(i)+(1-p) \alpha(i) & =p \alpha(i+1)+(1-p) \alpha(i-1) \\
(1-p)(\alpha(i)-\alpha(i-1)) & =p(\alpha(i+1)-\alpha(i)) \\
\alpha(i+1)-\alpha(i) & =\frac{1-p}{p}(\alpha(i)-\alpha(i-1))
\end{aligned}
$$

(c) Now that we have a relationship between $\alpha(i+1)-\alpha(i)$ and $\alpha(i)-\alpha(i-1)$, notice that we can iteratively apply the recurrence to get

$$
\begin{aligned}
\alpha(i+1)-\alpha(i) & =\frac{1-p}{p}(\alpha(i)-\alpha(i-1)) \\
& =\left(\frac{1-p}{p}\right)^{2}(\alpha(i-1)-\alpha(i-2)) \\
& \vdots \\
& =\left(\frac{1-p}{p}\right)^{i}(\alpha(1)-\alpha(0)) \\
& =\left(\frac{1-p}{p}\right)^{i} \alpha(1)
\end{aligned}
$$

since $\alpha(0)=0$ (once we lose all our money, we stop and can never reach n).
Further, notice that we have the telescoping sum

$$
[\alpha(i)-\alpha(i-1)]+[\alpha(i-1)-\alpha(i-2)]+\cdots+[\alpha(1)-\alpha(0)]=\alpha(i)-\alpha(0)=\alpha(i)
$$

This means that we have the summation

$$
\begin{aligned}
\alpha(i) & =\sum_{k=0}^{i-1}(\alpha(k+1)-\alpha(k)) \\
& =\sum_{k=0}^{i-1}\left(\frac{1-p}{p}\right)^{k} \alpha(1) \\
& =\alpha(1) \sum_{k=0}^{i-1}\left(\frac{1-p}{p}\right)^{k} \\
& =\alpha(1) \cdot \frac{1-\left(\frac{1-p}{p}\right)^{i}}{1-\frac{1-p}{p}}
\end{aligned}
$$

[Note that if $p=\frac{1}{2}$, the last step is not valid; in fact, since $\frac{1-p}{p}=1$, this means that $\alpha(i)=i \alpha(1)$. We'll come back to this case later.]

The previous formula applies for all $0<i \leq n$, so we can let $i=n$ and simplify to find $\alpha(1)$:

$$
\begin{aligned}
1=\alpha(n) & =\alpha(1) \cdot \frac{1-\left(\frac{1-p}{p}\right)^{n}}{1-\frac{1-p}{p}} \\
\frac{1-\frac{1-p}{p}}{1-\left(\frac{1-p}{p}\right)^{n}} & =\alpha(1)
\end{aligned}
$$

Plugging this back in for $\alpha(i)$, we have

$$
\alpha(i)=\frac{1-\frac{1-p}{p}}{1-\left(\frac{1-p}{p}\right)^{n}} \cdot \frac{1-\left(\frac{1-p}{p}\right)^{i}}{1-\frac{1-p}{p}}=\frac{1-\left(\frac{1-p}{p}\right)^{i}}{1-\left(\frac{1-p}{p}\right)^{n}}
$$

Going back to the case where $p=\frac{1}{2}$, we saw that the summation simplifies to $\alpha(i)=i \alpha(1)$. Since $\alpha(n)=1$, this means that $1=n \alpha(1)$, or $\alpha(1)=\frac{1}{n}$. This means that we have

$$
\alpha(i)=i \alpha(1)=\frac{i}{n}
$$

Together, we have the following formula for any $0 \leq i \leq n$:

$$
\alpha(i)=\left\{\begin{array}{ll}
\frac{1-\left(\frac{1-p}{p}\right)^{i}}{1-\left(\frac{1-p}{p}\right)^{n}} & p \neq \frac{1}{2} \\
\frac{i}{n} & p=\frac{1}{2}
\end{array} .\right.
$$

(d) (i) If $p>\frac{1}{2}$, then $\frac{1-p}{p}<1$, and as $n \rightarrow \infty$, the $\left(\frac{1-p}{p}\right)^{n}$ term in the denominator vanishes. This means that all we're left with is the numerator, and as such

$$
\lim _{n \rightarrow \infty} \alpha(i)=1-\left(\frac{1-p}{p}\right)^{i}
$$

(ii) If $p=\frac{1}{2}$, then we know that $\alpha(i)=\frac{i}{n}$. As $n \rightarrow \infty$, this fraction goes to 0 , and we have

$$
\lim _{n \rightarrow \infty} \alpha(i)=0 .
$$

(iii) If $p<\frac{1}{2}$, then $\frac{1-p}{p}>1$, and as $n \rightarrow \infty$, the $\left(\frac{1-p}{p}\right)^{n}$ term in the denominator blows up. This means that the denominator tends to $-\infty$, while the numerator remains bounded for any fixed i. This means that the entire fraction tends to 0 , i.e,

$$
\lim _{n \rightarrow \infty} \alpha(i)=0 .
$$

Note that this problem shows that, even in the case of a fair game (i.e., $p=\frac{1}{2}$), the probability that a gambler wins $\$ \mathrm{n}$ before going broke tends to zero as $n \rightarrow \infty$. This is one version of the so-called "Gambler's Ruin" problem. Only in the case where $p>\frac{1}{2}$, i.e., when the game is strictly in the gambler's favor, does the gambler come out on top with positive probability.

