70: Discrete Math and Probability Theory	Instructors	Instructors
 Programming + Data Structures/Algorithms + Microprocessors ≡ Superpower! (almost) What are our super powerful programs/processors doing? Logic and Proofs! Induction ≡ Recursion. What can computers do? Work with discrete objects. Discrete Math ⇒ immense application. Computers learn and interact with the world? E.g. Al/machine learning, cyber-physical systems/robotics, networking/wireless communications, Probability! 	 Instructor: Sanjit Seshia. Professor of EECS (office: 566 Cory) 19th year on the faculty at Berkeley! Ph.D.: in Computer Science, from Carnegie Mellon University. Research: Formal Methods (a.k.a. Computational Proof Methods) applied to cyber-physical systems/robotics (e.g. "is this self-driving car safe"), computer security (e.g., "can this program leak my private data?"), Taught: CS 70, EECS 149/249A, CS 172, EECS 144/244, EECS 219C, EECS149.1x on edX, 	 Alistair Sinclair Professor of CS (office 677 Soda) @ Berkeley since pre-history (1994) Originally from the UK: undergrad @ Cambridge, PhD @ Edinburgh Research: CS Theory, esp. algorithms, randomness, statistical physics, stochastic processes Teaching: CS70, CS170, CS172, CS174 + various grad classes
Admin	Learning and Teaching	CS70: Lecture 1. Outline.
Course Webpage: http://eecs70.org/ Explains policies, has office hours, schedule, homework, exam dates, etc. One midterm, final. midterm on March 6 final on May 10 Questions/Announcements \implies Ed Discussion Grading – see course webpage homework/no-homework option continues	Variety of Background Knowledge on the Topics of CS70 "mini-vitamins" before lecture can help Variety of Learning Styles take "notes" during lecture? Variety of Teaching Styles slides vs. no slides Learn by Doing (Mathematical Modeling/Problem Solving)	 Today: Note 1. (Note 0 is background. Do read/skim it.) The language of proofs! Mathematical Logic! Propositions. Propositional Forms. Implication. Truth Tables Quantifiers More De Morgan's Laws

e e e e

Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

" $P \land Q$ " is True when both P and Q are True . Else False . Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False . Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False . Else False .

Examples:

¬ "(2+2=4)"	 a proposition that is False
" $2+2=3$ " \wedge " $2+2=4$ "	- a proposition that is False
"2+2=3" ∨ "2+2=4"	- a proposition that is True

Truth Tables for Propositional Forms.

Р	Q	$P \wedge Q$		Р	Q	$P \lor G$
Т	Т	Т	1	Т	Т	Т
Т	F	F		Т	F	Т
F	Т	F		F	Т	Т
F	F	F		F	F	F

One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...because the two propositional forms have the same...

....Truth Table!

Ρ	Q	$\neg(P \land Q)$	$\neg P \lor \neg Q$
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

DeMorgan's Law's for Negation: distribute and flip!

$$\neg (P \land Q) \equiv \neg P \lor \neg Q \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q$$

Propositional Forms: quick check!

```
P = \sqrt[n]{2} \text{ is rational}^{"}
Q = \sqrt[n]{2} \text{ chick of prime is } 2^{"}
P \text{ is ...False .}
Q \text{ is ...True .}
P \wedge Q \dots \text{ False}
P \vee Q \dots \text{ True}
\neg P \dots \text{ True}
\neg P \dots \text{ True}
Implication.
P \implies Q \text{ interpreted as}
If P, then Q.
True Statements: P, P \implies Q.
Conclude: Q is true.
Example: Statement: If you stand in the rain, then you'll get wet.
```

P = "you stand in the rain" Q = "you will get wet" Statement: "Stand in the rain" Can conclude: "you'll get wet."

Non-Consequences/consequences of Implication

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing P False means Q can be True or False Anything implies true. P can be True or False when Q is True

If chemical plant pollutes river, fish die. If fish die, did chemical plant polluted river?

Not necessarily.

 $P \implies Q$ and Q are True does not mean P is True

Instead we have: $P \Longrightarrow Q$ and P are True does mean Q is True.

Be careful out there!

Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \land P) \Longrightarrow Q.$

Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv . $P \Longrightarrow Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \Longrightarrow \neg P.$

- Converse of $P \implies Q$ is $Q \implies P$. If fish die the plant pollutes. Not logically equivalent!
- **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$. (Logically Equivalent: \iff .)

$P \implies Q$

- ▶ If P. then Q.
- ▶ *Q* if *P*.
- ▶ P only if Q.
- ▶ P is sufficient for Q.
- ► *Q* is necessary for *P*.

Variables.

Propositions?

 $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$

> x > 2

- n is even and the sum of two primes
- No. They have a free variable.

We call them predicates, e.g., Q(x) = x is even"

Same as boolean valued functions from 61A!

- ► $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- ▶ R(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"

Next: Statements about boolean valued functions!!

Truth Table: implication.

 $\neg P \lor Q \equiv P \Longrightarrow Q.$

These two propositional forms are logically equivalent!

Quantifiers..

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S"

Wait! What is S?

S is the **universe**: "the type of x".

Universe examples include..

- ▶ $N = \{0, 1, 2, ...\}$ (natural numbers).
- $\blacktriangleright Z = \{..., -1, 0, 1, ...\}$ (integers)
- \triangleright Z⁺ (positive integers)
- See note 0 for more!

Quantifiers..

There exists quantifier: $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S" For example: $(\exists x \in N)(x = x^2)$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier; $(\forall x \in S) (P(x))$. means "For all x in S P(x) is True ." Examples:

"Adding 1 makes a bigger number."

 $(\forall x \in N) (x+1 > x)$

"the square of a number is always non-negative" $(\forall x \in N)(x^2 > 0)$

Negation of exists.

Consider

 $\neg(\exists x \in S)(P(x))$

Equivalent to:

 $\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$

English: means that for all x in S, P(x) does not hold.

Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

 $(\exists y \in N) (\forall x \in N) (y = x^2)$ False

Consider this one: "the square of every natural number is a natural number"...

 $(\forall x \in N)(\exists y \in N) (y = x^2)$ True

Which Theorem?

Theorem: $\forall n \in N \ (n \ge 3 \implies \neg(\exists a, b, c \in N \ a^n + b^n = c^n))$ Which Theorem? Fermat's Last Theorem! Remember Right-Angled Triangles: for n = 2, we have (3, 4, 5)and (5, 12, 13), and ... (Pythagorean triples) 1637: Fermat: Proof doesn't fit in the margins. 1993: Wiles ...(based in part on Ribet's Theorem) DeMorgan Restatement: Theorem: $\neg(\exists n \in N \ \exists a, b, c \in N \ (n \ge 3 \land a^n + b^n = c^n))$ Quantifiers....negation...DeMorgan again.

Consider

 $\neg(\forall x \in S)(P(x)),$

By DeMorgan's law,

 $\neg(\forall x \in S)(P(x)) \iff (\exists x \in S)(\neg P(x)).$

English: there is an x in S where P(x) does not hold. What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works." For False , find x, where $\neg P(x)$. Counterexample. Bad input. Case that illustrates bug. For True : prove claim. Next lectures...

Summary.

Propositions are statements that are true or false. Propositional forms use \land, \lor, \neg . The meaning of a propositional form is given by its truth table. Logical equivalence of forms means same truth tables. Implication: $P \implies Q \iff \neg P \lor Q$. Contrapositive: $\neg Q \implies \neg P$ Converse: $Q \implies P$ Predicates: Statements with "free" variables. Quantifiers: $\forall x P(x), \exists y Q(y)$ Now can state theorems! And disprove false ones! DeMorgans Laws: "Flip and Distribute negation" $\neg (P \lor Q) \iff (\neg P \land \neg Q)$ $\neg \forall x P(x) \iff \exists x \neg P(x).$ Next Time: proofs!