70: Discrete Math and Probability Theory

Programming + Data Structures/Algorithms + Microprocessors三 Superpower! (almost)
What are our super powerful programs/processors doing? Logic and Proofs!
Induction \equiv Recursion
What can computers do?
Work with discrete objects.
Discrete Math \Longrightarrow immense application.
Computers learn and interact with the world?
E.g. Al/machine learning, cyber-physical systems/robotics, networking/wireless communications, ..
Probability!

Admin

Course Webpage: http://eecs70.org

Explains policies, has office hours, schedule, homework,
exam dates, etc.
One midterm, final.
midterm on March 6
final on May 10
Questions/Announcements \Longrightarrow Ed Discussion
Grading - see course webpage
homework/no-homework option continues

Instructors

Instructor: Sanjit Seshia
Professor of EECS (office: 566 Cory)
19th year on the faculty at Berkeley!
Ph.D.: in Computer Science, from Carnegie Mellon University.
Research: Formal Methods (a.k.a. Computational Proof Methods)
applied to cyber-physical systems/robotics (e.g. "is this self-driving car safe"), computer security (e.g., "can this program leak my private data?"), ..

Taught: CS 70, EECS 149/249A, CS 172, EECS 144/244 EECS 219C, EECS149.1x on edX, ...

Learning and Teaching

Variety of Background Knowledge on the Topics of CS70 "mini-vitamins" before lecture can help
Variety of Learning Styles
take "notes" during lecture?
Variety of Teaching Styles
slides vs. no slides
Learn by Doing (Mathematical Modeling/Problem Solving)

Instructors

- Alistair Sinclair
- Professor of CS (office 677 Soda)
- @ Berkeley since pre-history (1994)
- Originally from the UK: undergrad @ Cambridge, PhD @ Edinburgh
- Research: CS Theory, esp. algorithms, randomness, statistical physics, stochastic processes..
- Teaching: CS70, CS170, CS172, CS174 + various grad classes

CS70: Lecture 1. Outline.

Today: Note 1. (Note 0 is background. Do read/skim it.) The language of proofs! Mathematical Logic!

1. Propositions.
2. Propositional Forms.
3. Implication.
4. Truth Tables
5. Quantifiers
6. More De Morgan's Laws

Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational	Proposition	True
$2+2=4$	Proposition	True
$2+2=3$	Proposition	False
826th digit of pi is 4	Proposition	False
Stephen Curry is a good basketball player	Not a Proposition	
All evens >2 are unique sums of 2 primes	Proposition	False
$4+5$	Not a Proposition.	
$x+x$	Not a Proposition.	

Again: "value" of a proposition is ... True or False

Put them together..

Propositions:
 P_{1} - Person 1 rides the bus
 P_{2} - Person 2 rides the bus.

Suppose we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.
Propositional Form:
$\neg\left(\left(\left(P_{1} \vee P_{2}\right) \wedge\left(P_{3} \vee P_{4}\right)\right) \vee\left(\left(P_{2} \vee P_{3}\right) \wedge\left(P_{4} \vee \neg P_{5}\right)\right)\right)$
Who can ride the bus?
What combinations of people can ride the bus?
This seems ...complicated.
We need a way to keep track!

Propositional Forms.

Put propositions together to make another...
Conjunction ("and"): $P \wedge Q$
" $P \wedge Q$ " is True when both P and Q are True. Else False
Disjunction ("or"): $P \vee Q$
" $P \vee Q$ " is True when at least one P or Q is True. Else False .
Negation ("not"): $\neg P$
" $\neg P$ " is True when P is False. Else False .
Examples:
\neg " $(2+2=4)$ " \quad - a proposition that is ... False
$" 2+2=3 " \wedge$ " $2+2=4$ " - a proposition that is ... False
" $2+2=3$ " \backslash " $2+2=4$ " - a proposition that is ... True

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \wedge Q)$ logically equivalent to $\neg P \vee \neg Q$
...because the two propositional forms have the same...
....Truth Table!

P	Q	$\neg(P \wedge Q)$	$\neg P \vee \neg Q$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

DeMorgan's Law's for Negation: distribute and flip! $\neg(P \wedge Q) \equiv \neg P \vee \neg Q \quad \neg(P \vee Q) \equiv \neg P \wedge \neg Q$

Propositional Forms: quick check!
$P=" \sqrt{2}$ is rational"
$Q=$ "826th digit of pi is 2 "
P is ...False .
Q is ...True .
$P \wedge Q \ldots$ False
$P \vee Q \ldots$... True
$\neg P$... True

Implication

$P \Longrightarrow Q$ interpreted as

If P, then Q.
True Statements: $P, P \Longrightarrow Q$.
Conclude: Q is true.
Example: Statement: If you stand in the rain, then you'll get wet.
$P=$ "you stand in the rain"
$Q=$ "you will get wet"
Statement: "Stand in the rain"
Can conclude: "you'll get wet."

Non-Consequences/consequences of Implication
The statement " $P \Longrightarrow Q^{\prime}$ "
only is False if P is True and Q is False .
False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True
If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?
Not necessarily.
$P \Longrightarrow Q$ and Q are True does not mean P is True
Instead we have:
$P \Longrightarrow Q$ and P are True does mean Q is True .
Be careful out there!
Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \wedge P) \Longrightarrow Q$.

Contrapositive, Converse

- Contrapositive of $P \Longrightarrow Q$ is $\neg Q \Longrightarrow \neg P$.
- If the plant pollutes, fish die.
- If the fish don't die, the plant does not pollute. (contrapositive)
- If you stand in the rain, you get wet.
- If you did not stand in the rain, you did not get wet.
(not contrapositive!) converse!
- If you did not get wet, you did not stand in the rain. (contrapositive.)
Logically equivalent! Notation: \equiv.
$P \Longrightarrow Q \equiv \neg P \vee Q \equiv \neg(\neg Q) \vee \neg P \equiv \neg Q \Longrightarrow \neg P$.
- Converse of $P \Longrightarrow Q$ is $Q \Longrightarrow P$.

If fish die the plant pollutes.
Not logically equivalent!

- Definition: If $P \Longrightarrow Q$ and $Q \Longrightarrow P$ is P if and only if Q or $P \Longleftrightarrow Q$.
(Logically Equivalent: \Longleftrightarrow.)

Implication and English.
$P \Longrightarrow Q$

- If P, then Q.
- Q if P.
- Ponly if Q.
- P is sufficient for Q.
- Q is necessary for P.

Variables

Propositions?

- $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- $x>2$
- n is even and the sum of two primes

No. They have a free variable.
We call them predicates, e.g., $Q(x)=$ " x is even"
Same as boolean valued functions from 61A!

- $P(n)=" \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$."
- $R(x)=" x>2 "$
- $G(n)=$ " n is even and the sum of two primes"

Next: Statements about boolean valued functions!!

Truth Table: implication.

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	Q	$\neg P \vee Q$
T	T	T
T	F	F
F	T	T
F	F	T

These two propositional forms are logically equivalent!

Quantifiers..

There exists quantifier:

$(\exists x \in S)(P(x))$ means " $P(x)$ is true for some x in S " Wait! What is S ?
S is the universe: "the type of x ".
Universe examples include..

- $N=\{0,1,2, \ldots\}$ (natural numbers).
- $Z=\{\ldots,-1,0,1, \ldots\}$ (integers)
- Z^{+}(positive integers)
- See note 0 for more!

Quantifiers.

There exists quantifier

$(\exists x \in S)(P(x))$ means " $P(x)$ is true for some x in S " For example:

$$
(\exists x \in N)\left(x=x^{2}\right)
$$

Equivalent to " $(0=0) \vee(1=1) \vee(2=4) \vee \ldots$ "
Much shorter to use a quantifier!

For all quantifier;

$(\forall x \in S)(P(x))$. means "For all x in $S P(x)$ is True ."

Examples:

"Adding 1 makes a bigger number."

$$
(\forall x \in N)(x+1>x)
$$

"the square of a number is always non-negative"

$$
(\forall x \in N)\left(x^{2} \geq 0\right)
$$

Negation of exists

Consider

$$
\neg(\exists x \in S)(P(x))
$$

Equivalent to:

$$
\neg(\exists x \in S)(P(x)) \Longleftrightarrow \forall(x \in S) \neg P(x) .
$$

English: means that for all x in $S, P(x)$ does not hold.

Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

$$
(\exists y \in N)(\forall x \in N)\left(y=x^{2}\right) \quad \text { False }
$$

- Consider this one: "the square of every natural number is a natural number"...

$$
(\forall x \in N)(\exists y \in N)\left(y=x^{2}\right) \quad \text { True }
$$

Which Theorem?

Theorem: $\forall n \in N\left(n \geq 3 \Longrightarrow \neg\left(\exists a, b, c \in N a^{n}+b^{n}=c^{n}\right)\right)$
Which Theorem?
Fermat's Last Theorem
Remember Right-Angled Triangles: for $n=2$, we have ($3,4,5$) and ($5,12,13$), and ... (Pythagorean triples)
1637: Fermat: Proof doesn't fit in the margins.
1993: Wiles ...(based in part on Ribet's Theorem)
DeMorgan Restatemen
Theorem: $\neg\left(\exists n \in N \exists a, b, c \in N\left(n \geq 3 \wedge a^{n}+b^{n}=c^{n}\right)\right.$

Quantifiers....negation...DeMorgan again.
Consider

$$
\neg(\forall x \in S)(P(x)),
$$

By DeMorgan's law,

$$
\neg(\forall x \in S)(P(x)) \Longleftrightarrow(\exists x \in S)(\neg P(x))
$$

English: there is an x in S where $P(x)$ does not hold.
What we do in this course! We consider claims.
Claim: $(\forall x) P(x)$ "For all inputs x the program works."
For False , find x, where $\neg P(x)$.
Counterexample.
Bad input.
Case that illustrates bug
For True : prove claim. Next lectures...

Summary.

Propositions are statements that are true or false.
Propositional forms use \wedge, \vee, \neg.
The meaning of a propositional form is given by its truth table
Logical equivalence of forms means same truth tables.
Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \vee Q$.
Contrapositive: $\neg Q \Longrightarrow \neg P$
Converse: $Q \Longrightarrow P$
Predicates: Statements with "free" variables.
Quantifiers: $\forall x P(x), \exists y Q(y)$
Now can state theorems! And disprove false ones!
DeMorgans Laws: "Flip and Distribute negation"
$\neg(P \vee Q) \Longleftrightarrow(\neg P \wedge \neg Q)$
$\begin{aligned} & \neg(P \vee Q(x) \Longleftrightarrow \quad(\neg P \wedge \neg Q) \\ & \neg \forall P(x) .\end{aligned}$
Next Time: proofs!

