70: Discrete Math and Probability Theory

Programming + Data Structures/Algorithms + Microprocessors = Superpower! (almost)

What are our super powerful programs/processors doing?

Logic and Proofs!

Induction = Recursion.

What can computers do?
Work with discrete objects.

Discrete Math ⇒ immense application.

Computers learn and interact with the world?

E.g. Al/machine learning, cyber-physical systems/robotics, networking/wireless communications, ...

Probability!

Instructors

Instructor: Sanjit Seshia.

Professor of EECS (office: 566 Cory)

19th year on the faculty at Berkeley!

Ph.D.: in Computer Science, from Carnegie Mellon University.

Research: Formal Methods (a.k.a. Computational Proof Methods)

applied to cyber-physical systems/robotics (e.g. "is this self-driving car safe"), computer security (e.g., "can this program leak my private data?"), ...

Taught: CS 70, EECS 149/249A, CS 172, EECS 144/244, EECS 219C, EECS149.1x on edX, ...

Instructors

- Alistair Sinclair
- Professor of CS (office 677 Soda)
- @ Berkeley since pre-history (1994)
- Originally from the UK: undergrad @ Cambridge, PhD @ Edinburgh
- Research: CS Theory, esp. algorithms, randomness, statistical physics, stochastic processes...
- Teaching: CS70, CS170, CS172, CS174 + various grad classes

Admin

Course Webpage: http://eecs70.org/

Explains policies, has office hours, schedule, homework, exam dates, etc.

One midterm, final. midterm on March 6 final on May 10

Questions/Announcements ⇒ Ed Discussion

Grading – see course webpage homework/no-homework option continues

Learning and Teaching

Variety of Background Knowledge on the Topics of CS70 "mini-vitamins" before lecture can help

Variety of Learning Styles take "notes" during lecture?

Variety of Teaching Styles slides vs. no slides

Learn by Doing (Mathematical Modeling/Problem Solving)

CS70: Lecture 1. Outline.

Today: Note 1. (Note 0 is background. Do read/skim it.)

The language of proofs! Mathematical Logic!

- 1. Propositions.
- 2. Propositional Forms.
- 3. Implication.
- 4. Truth Tables
- Quantifiers
- 6. More De Morgan's Laws

Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational	Proposition	True
2+2=4	Proposition	True
2+2 = 3	Proposition	False
826th digit of pi is 4	Proposition	False
Stephen Curry is a good basketball player	Not a Proposition	
All evens > 2 are unique sums of 2 primes	Proposition	False
4+5	Not a Proposition.	
X + X	Not a Proposition.	

Again: "value" of a proposition is ... True or False

Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \wedge Q$

" $P \wedge Q$ " is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

" $P \lor Q$ " is True when at least one P or Q is True . Else False .

Negation ("not"): $\neg P$

" $\neg P$ " is True when P is False. Else False.

Examples:

$$\neg$$
 " $(2+2=4)$ " — a proposition that is ... False " $2+2=3$ " \wedge " $2+2=4$ " — a proposition that is ... False " $2+2=3$ " \vee " $2+2=4$ " — a proposition that is ... True

Propositional Forms: quick check!

```
P= "\sqrt{2} is rational"

Q= "826th digit of pi is 2"

P is ...False .

Q is ...True .

P \wedge Q ... False

P \vee Q ... True
```

¬P ... True

Put them together...

Propositions:

 P_1 - Person 1 rides the bus.

 P_2 - Person 2 rides the bus.

....

Suppose we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

$$\neg(((P_1\vee P_2)\wedge (P_3\vee P_4))\vee ((P_2\vee P_3)\wedge (P_4\vee \neg P_5)))$$

Who can ride the bus?

What combinations of people can ride the bus?

This seems ...complicated.

We need a way to keep track!

Truth Tables for Propositional Forms.

P	Q	$P \wedge Q$
Т	Т	T
T	F	F
F	Т	F
F	F	F

P	Q	$P \lor Q$
T	Т	T
T	F	Т
F	Т	Т
F	F	F

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

Р	Q	$\neg (P \land Q)$	$\neg P \lor \neg Q$
Т	Т	F	F
Т	F	T	T
F	Т	T	Т
F	F	T	T

DeMorgan's Law's for Negation: distribute and flip!

$$\neg (P \land Q) \quad \equiv \quad \neg P \lor \neg Q \qquad \qquad \neg (P \lor Q) \quad \equiv \quad \neg P \land \neg Q$$

Implication.

 $P \Longrightarrow Q$ interpreted as If P, then Q.

True Statements: $P, P \Longrightarrow Q$.

Conclude: Q is true.

Example: Statement: If you stand in the rain, then you'll get wet.

P = "you stand in the rain" Q = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Non-Consequences/consequences of Implication

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.

If fish die, did chemical plant polluted river?

Not necessarily.

 $P \Longrightarrow Q$ and Q are True does not mean P is True

Instead we have:

 $P \Longrightarrow Q$ and P are True does mean Q is True.

Be careful out there!

Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \land P) \Longrightarrow Q$.

Implication and English.

- $P \Longrightarrow Q$
 - ▶ If *P*, then *Q*.
 - ▶ *Q* if *P*.
 - ▶ *P* only if *Q*.
 - P is sufficient for Q.
 - Q is necessary for P.

Truth Table: implication.

Р	Q	$P \Longrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Р	Q	$\neg P \lor Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

These two propositional forms are logically equivalent!

Contrapositive, Converse

- ▶ Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - ► If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

- Converse of P ⇒ Q is Q ⇒ P. If fish die the plant pollutes. Not logically equivalent!
- ▶ Definition: If P ⇒ Q and Q ⇒ P is P if and only if Q or P ⇔ Q. (Logically Equivalent: ⇔.)

Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $\rightarrow x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = x is even

Same as boolean valued functions from 61A!

$$P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
."

- R(x) = x > 2
- ightharpoonup G(n) = "n" is even and the sum of two primes"

Next: Statements about boolean valued functions!!

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S"

Wait! What is S?

S is the **universe**: "the type of x".

Universe examples include..

- $N = \{0, 1, 2, ...\}$ (natural numbers).
- $ightharpoonup Z = \{..., -1, 0, 1, ...\}$ (integers)
- ► Z⁺ (positive integers)
- See note 0 for more!

Quantifiers...

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S" For example:

$$(\exists x \in N)(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S P(x) is True."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in N) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in N)(x^2 \ge 0)$$

Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

Consider this one: "the square of every natural number is a natural number"...

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

Quantifiers....negation...DeMorgan again.

Consider

$$\neg(\forall x\in\mathcal{S})(P(x)),$$

By DeMorgan's law,

$$\neg(\forall x \in S)(P(x)) \iff (\exists x \in S)(\neg P(x)).$$

English: there is an x in S where P(x) does not hold. What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim. Next lectures...

Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

Equivalent to:

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

English: means that for all x in S, P(x) does not hold.

Which Theorem?

Theorem: $\forall n \in N \ (n \ge 3 \implies \neg(\exists a, b, c \in N \ a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Right-Angled Triangles: for n = 2, we have (3,4,5) and (5,12,13), and ... (Pythagorean triples)

1637: Fermat: Proof doesn't fit in the margins.

1993: Wiles ... (based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg (\exists n \in N \exists a, b, c \in N (n \ge 3 \land a^n + b^n = c^n))$

Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Next Time: proofs!