Outline for Today.

Polynomials.

Secret Sharing.

Finite Fields.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing.
Robustness: Any k knows secret.
Geometric Intuition for today:
Two points make a line.
Lots of lines go through one point.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} .
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
$P(x)$ contains point (a, b) if $b=P(a)$.
Polynomials over reals: $a_{1}, \ldots, a_{d} \in \Re$, use $x \in \Re$.

Field (in Mathematics)

Set with two commutative operations: addition and multiplication with additive/multiplicative identities and inverses
(except for additive identity has no multiplicative inverse).
E.g., Reals, rationals, complex numbers.

Not E.g., the integers.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Finite Fields

Arithmetic modulo a prime integer p has multiplicative inverses...
...and has only a finite number of elements.
Arithmetic modulo a prime p is a finite field denoted by $\operatorname{GF}(p)$.
$G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$
Polynomials $P(x)$ with arithmetic modulo p :

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} \quad(\bmod p)
$$

for $x \in\{0, \ldots, p-1\}$ and $a_{i} \in\{0, \ldots, p-1\}$

Polynomial: $P(x)=a_{d} x^{d}+\cdots+a_{0}$ over \mathfrak{R}

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$

Polynomial: $P(x)=a_{d} x^{d}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5) \Longrightarrow x \equiv 3(\bmod 5)$
3 is multiplicative inverse of 2 modulo 5 .
Good when modulus is prime!!

Two points make a line.

Fact: Given $d+1$ points ${ }^{1}$, exactly 1 degree $\leq d$ polynomial contains them.

Two points specify a line. Three points specify a parabola.
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

[^0]
Test your understanding: Polynominal Notation

Polynomial: $a_{n} x^{n}+\cdots+a_{0}$.
Consider line: $m x+b$
(A) $a_{1}=m$
(B) $a_{1}=b$
(C) $a_{0}=m$
(D) $a_{0}=b$.
(A) and (D)

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{2}$
${ }^{2}$ Points with different x values.

2 points not enough.

There is a $P(x)$ contains blue points and any $(0, y)$!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \Longrightarrow any $P(0)$ is possible.

Poll:example.

The polynomial from the scheme: $P(x)=2 x^{2}+1 x+3(\bmod 5)$. What is true for the secret sharing scheme using $P(x)$?
(A) The secret is " 2 ".
(B) The secret is " 3 ".
(C) A share could be $(1,5)$ because $P(1)=5$
(D) A share could be $(2,4)$
(E) A share could be $(0,3)$
(B), (C) are true. (E) undesirable (reveals secret), start shares from $i=1$.

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3 \quad(\bmod 5) \\
m & \equiv 1 \quad(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .
And the line is...

$$
x+2 \bmod 5
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
& P(1)=a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& P(2)=4 a_{2}+2 a_{1}+a_{0} \equiv 4 \quad(\bmod 5) \\
& P(3)=4 a_{2}+3 a_{1}+a_{0} \equiv 0 \quad(\bmod 5) \\
& a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& 3 a_{1}+2 a_{0} \equiv 1 \\
& 4 a_{1}+2 a_{0} \equiv 2(\bmod 5) \\
&(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

So polynomial is $2 x^{2}+1 x+4(\bmod 5)$

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 !
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); $(2,4) ;(3,0)$!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations... $P(x)=2 x^{2}+1 x+4 \bmod 5$.
The same as before!

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain $\left(x_{1}, y_{1}\right) ?$ and $\left(x_{2}, y_{2}\right)$?
See the idea? Function that contains all points?

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x) \ldots+y_{d+1} \Delta_{d+1}(x) .
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial!
Construction proves the existence of a polynomial!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d.
Contradiction.
Must prove Roots fact.

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2 \\
& 4 \mathrm{x}-2 \\
& \text {------- }
\end{aligned}
$$

$4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)$
In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r.
That is, $P(x)=(x-a) Q(x)+r$

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 :
$P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1.
$Q(x)$ has smaller degree so use the induction hypothesis. It has $d-1$ roots. Hence $Q(x)=c^{\prime}\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$
Result follows.
$d+1$ roots implies degree is at least $d+1$.
Roots fact: Any degree d polynomial has at most d roots.

Secret Sharing: Summary

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.

Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality. With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k-1$ polynomial n times using $\log p$-bit numbers.
2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$. coefficient representation
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$ value representation

Infinite number for reals, rationals, complex numbers!

Summary

Two points make a line.
Compute solution: m, b. Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Can solve linear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring: $(x-r)$ is root. Induction only d roots.
Apply: $P(x), Q(x)$ degree d.
$P(x)-Q(x)$ is degree $d \Longrightarrow d$ roots.
$P(x)=Q(x)$ on $d+1$ points $\Longrightarrow P(x)=Q(x)$.
Secret Sharing:
k points on degree $k-1$ polynomial is great!
Can hand out n points on polynomial as shares.

[^0]: ${ }^{1}$ Points with different x values.

