
Outline

▶ Erasure Codes

▶ Error Correction

▶ More Polynomials!

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n+k packets and recover message?

Solution Idea: Use Polynomials!!!

Solution Idea.

n packet message, channel that loses k packets.

Must send at least n+k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial
which has n coefficients!

We have a strategy!

Use polynomials.

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n+k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: Message = m0,m1,m2, . . . ,mn−1.
Each mi is a packet.

1. Choose prime p > 2b for packet size b (size = number of bits).

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).
Each mi ∈ {0,1, . . . ,p−1}

3. Send P(1), . . . ,P(n+k). (p > n+k )

Any n of the n+k packets gives polynomial ...and message!

Erasure Codes.

Satellite

GPS device

n packet message. So send n+k !

Lose k packets.

1 2
· · · · · ·

· · · n+k

1 2
· · · · · ·

· · · n+k

Any n packets is enough!

n packet message.

Optimal.



Comparison with Secret Sharing.

Comparing information content:

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size 1/n of the whole message.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. n = 3,k = 3

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. (sum of ∆i polynomials)
Linear System of Equations. (in modular arithmetic)

Suppose we work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send n+k = 6 packets: (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least n+k = 6 packets.

Linear equations:

P(1) = a2 +a1 +a0 ≡ 1 (mod 7)
P(2) = 4a2 +2a1 +a0 ≡ 4 (mod 7)
P(3) = 2a2 +3a1 +a0 ≡ 4 (mod 7)

6a1 +3a0 = 2 (mod 7), 5a1 +4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 +4x +2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets are of the form x ,y : contain “x-values”.

Check Your Understanding

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 (n+k ) and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n+k and also larger than 2b.

Let’s Reflect: Polynomials are useful!

▶ Give Secret Sharing:
Evaluate at ≥ k points to recover secret

▶ Give Erasure Codes:
Send n+k pairs (x ,y) to reconstruct n-packet message

Next: Error Correction

Noisy Channel: corrupts k packets. (rather than loss/erasures.)

Additional Challenge: Finding which packets are corrupt.



Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.
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The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

▶ P(1) = m1, . . . ,P(n) = mn.
▶ Recall: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Receive values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n+2k)
Receive R(1), . . . ,R(n+2k)
At most k i ’s where P(i) ̸= R(i).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

Proof:
(1) Easy. Only k corruptions (by assumption).
(2) Degree n−1 polynomial Q(x) consistent with n+k points.

Q(x) agrees with R(i), n+k times.
P(x) agrees with R(i), n+k times. (possibly different n+k from

above?)
Total points contained by both: 2n+2k . P Pigeons.
Total points to choose from : n+2k . H Holes.
Points contained by both : ≥ n. ≥ P −H Collisions.
=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 +x +1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n+k = 3+1 = 4 points.

Slow solution.

Brute Force:
For each subset of n+k points (out of n+2k )

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with all n+k of the points.
If yes, output Q(x).

▶ For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

▶ Recall: For any subset of n+k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n+k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 +p1x +p0 that contains n+k = 3+1 points.

All equations..

p2 +p1 +p0 ≡ 3 (mod 7)
4p2 +2p1 +p0 ≡ 1 (mod 7)
2p2 +3p1 +p0 ≡ 6 (mod 7)
2p2 +4p1 +p0 ≡ 0 (mod 7)
1p2 +5p1 +p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!



In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n+2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)
pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! .... Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

Where can the bad packets be?
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

0×E(2)(pn−12n−1 + · · ·p0) ≡ R(2)E(2) (mod p)
...

E(m)(pn−1(m)n−1 + · · ·p0) ≡ R(n+2k)E(m) (mod p)

Idea: Multiply equation i by 0 if and only if P(i) ̸= R(i).
All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don’t know... But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x −e1)(x −e2) . . .(x −ek ).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (For our example, E(x) = (x-2).)

All equations satisfied!!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 +p1x +p0 that contains n+k = 3+1 points.

Plugin points...
(1−2)(p2 +p1 +p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 +2p1 +p0) ≡ (1)(2−2) (mod 7)
(3−2)(2p2 +3p1 +p0) ≡ (6)(3−2) (mod 7)
(4−2)(2p2 +4p1 +p0) ≡ (0)(4−2) (mod 7)
(5−2)(4p2 +5p1 +p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 +p1 +p0) ≡ (3)(1−e) (mod 7)
(2−e)(4p2 +2p1 +p0) ≡ (1)(2−e) (mod 7)
(3−e)(2p2 +3p1 +p0) ≡ (3)(3−e) (mod 7)
(4−e)(2p2 +4p1 +p0) ≡ (0)(4−e) (mod 7)
(5−e)(4p2 +5p1 +p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x −2).

Multiply equation i by (i −2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x −e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

The General Case.

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)
...

E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)
...

E(m)(pn−1mn−1 + · · ·p0) ≡ R(m)E(m) (mod p)

P(x) = pn−1xn−1 +pn−2xn−2 + . . .+p0

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Rewrite the i th equation, for all i , as:

Q(i) = R(i)E(i) (mod p).

Note: this is linear in ai and coefficients of E(x)!

Finding Q(x) and E(x)?

▶ E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

▶ Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n+2k ,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Once we have those, compute P(x) as Q(x)/E(x).



Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x −b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x −2.

Example: Compute P(x).

Q(x) = x3 +6x2 +6x +5.
E(x) = x −2.

1 xˆ2 + 1 x + 1
-----------------

x - 2 ) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2
----------

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x
---------------

x + 5
x - 2
-----

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

Error Correction: Berlekamp-Welch

Message: m1, . . . ,mn.
Sender:

1. Form degree n−1 polynomial P(x) where P(i) = mi .

2. Send P(1), . . . ,P(n+2k).

Receiver:

1. Receive R(1), . . . ,R(n+2k).

2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).

4. Compute P(1), . . . ,P(n), recover the message.

Test Your Understanding

Say you sent a message of length 4, encoded as P(x) where one
sends packets P(1), ...P(8).

You receive packets R(1), ...R(8).

Packets 1 and 4 are corrupted.

Which options are True?

(A) E(x) = (x −1)(x −4)
(B) The number of coefficients in E(x) is 2.
(C) The number of unknown coefficients in E(x) is 2.
(D) E(x) = (x −1)(x −2)
(E) R(4) ̸= P(4)
(F) The degree of R(x) is 5.

Ans: (A), (C), (E).

A key question.

Is there one and only one P(x) from Berlekamp-Welch procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)?

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x).(holds∀x) (1)
Proof:
Suppose we assume the claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Proof that Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points
=⇒ Q′(x)E(x) = Q(x)E ′(x).

Cross divide.



Revisiting last bit.

Claim: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If, for some i , E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Berlekamp-Welch algorithm decodes correctly when at most k errors!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Berlekamp-Welch Decoding. Efficient
Solution!


