How big is the set of reals or the set of integers?

How big is the set of reals or the set of integers?

Infinite!

How big is the set of reals or the set of integers?

Infinite!

Is one bigger or smaller?

Same Size?

When are two sets the same size?
(A) Bijection between the sets.
(B) Count the objects in each and get the same number.
(C) Both sets are infinite.

Same Size?

When are two sets the same size?
(A) Bijection between the sets.
(B) Count the objects in each and get the same number.
(C) Both sets are infinite.
(A), (B).

Same Size?

When are two sets the same size?
(A) Bijection between the sets.
(B) Count the objects in each and get the same number.
(C) Both sets are infinite.
(A), (B).

Not (C)... at least, not always! We will see why.

Countable.

How to count?

Countable.

How to count?
0 ,

Countable.

How to count?
0,1 ,

Countable.

How to count?
$0,1,2$,

Countable.

How to count?
0, 1, 2, 3,

Countable.

How to count?
$0,1,2,3, \ldots$

Countable.

How to count?
$0,1,2,3, \ldots$
The Counting numbers.

Countable.

How to count?
$0,1,2,3, \ldots$
The Counting numbers. The natural numbers! N

Countable.

How to count?
$0,1,2,3, \ldots$
The Counting numbers.
The natural numbers! N
Definition: S is countable if there is a bijection between S and some subset of N.

Countable.

How to count?
$0,1,2,3, \ldots$
The Counting numbers.
The natural numbers! N
Definition: S is countable if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite cardinality.

Countable.

How to count?
$0,1,2,3, \ldots$
The Counting numbers.
The natural numbers! N
Definition: S is countable if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite cardinality.
If the subset of N is infinite, S is countably infinite.

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. 1,2,3,4,...

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. 1,2,3,4,...
Where's 0 ?

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. 1,2,3,4,...
Where's 0?
More natural numbers!?

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. 1,2,3,4,...
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. 1,2,3,4, \ldots
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2}$

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$
Positive integers. 1,2,3,4, \ldots
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1$

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n, for $z=n+1$,

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n, for $z=n+1, f(z)$

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1$

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n, for $z=n+1, f(z)=(n+1)-1=n$.

Z^{+}vs. N : Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n, for $z=n+1, f(z)=(n+1)-1=n$.
Onto!

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1=n$.
Onto!
Bijection!

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1=n$.
Onto!
Bijection!
$\left|Z^{+}\right|=|N|$.

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1=n$.
Onto!
Bijection!
$\left|Z^{+}\right|=|N|$.
But..

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1=n$.
Onto!
Bijection!
$\left|Z^{+}\right|=|N|$.
But.. where's zero?

Z^{+}vs. N: Where's 0?

Which is bigger?
The positive integers, Z^{+}, or the natural numbers, N.
Natural numbers. $0,1,2,3, \ldots$.
Positive integers. $1,2,3,4, \ldots$.
Where's 0 ?
More natural numbers!?
Consider $f: Z^{+} \rightarrow N$ where $f(z)=z-1$.
For any two $z_{1} \neq z_{2} \Longrightarrow z_{1}-1 \neq z_{2}-1 \Longrightarrow f\left(z_{1}\right) \neq f\left(z_{2}\right)$.
One to one!
For any natural number n,
for $z=n+1, f(z)=(n+1)-1=n$.
Onto!
Bijection!
$\left|Z^{+}\right|=|N|$.
But.. where's zero? "It comes from 1."

More sets.

E - Even natural numbers. Countable?

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto:

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e$.

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even One-to-one:

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \Longrightarrow 2 x \neq 2 y$.

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \Longrightarrow 2 x \neq 2 y . \equiv f(x) \neq f(y)$

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \Longrightarrow 2 x \neq 2 y$. $\equiv f(x) \neq f(y)$
Evens are countably infinite.

More sets.

E - Even natural numbers. Countable?
$f: N \rightarrow E$.
$f(n) \rightarrow 2 n$.
Onto: $\forall e \in E, f(e / 2)=e . e / 2$ is natural since e is even
One-to-one: $\forall x, y \in N, x \neq y \Longrightarrow 2 x \neq 2 y$. $\equiv f(x) \neq f(y)$
Evens are countably infinite.
Evens are same size as all natural numbers.

All integers?

What about Integers, Z ?

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd }\end{cases}
$$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$ if x is even and y is odd,

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$ if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even,

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

Onto: For any $z \in Z$,

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \geq 0, f(2 z)=z$ and $2 z \in N$.

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd } .\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \geq 0, f(2 z)=z$ and $2 z \in N$.
if $z<0, f(2|z|-1)=z$ and $2|z|-1 \in N$.

All integers?

What about Integers, Z ?
Define $f: N \rightarrow Z$.

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd } .\end{cases}
$$

One-to-one: For $x \neq y$
if x is even and y is odd, then $f(x)$ is nonnegative and $f(y)$ is negative $\Longrightarrow f(x) \neq f(y)$ if x is even and y is even, then $x / 2 \neq y / 2 \Longrightarrow f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \geq 0, f(2 z)=z$ and $2 z \in N$.
if $z<0, f(2|z|-1)=z$ and $2|z|-1 \in N$.
Integers and naturals have same size!

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. } .\end{cases}
$$

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

$n \quad f(n)$

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2
4	2

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. }\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2
4	2
\cdots	\cdots

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. } .\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2
4	2
\cdots	\ldots

Notice that: A listing "is" a bijection with a subset of natural numbers.

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. } .\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2
4	2
\cdots	\ldots

Notice that: A listing "is" a bijection with a subset of natural numbers. If finite: bijection with $\{0, \ldots,|S|-1\}$

Listings..

$$
f(n)= \begin{cases}n / 2 & \text { if } n \text { even } \\ -(n+1) / 2 & \text { if } n \text { odd. } .\end{cases}
$$

Another View:

n	$f(n)$
0	0
1	-1
2	1
3	-2
4	2
\ldots	\ldots

Notice that: A listing "is" a bijection with a subset of natural numbers. If finite: bijection with $\{0, \ldots,|S|-1\}$
If infinite: bijection with N.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable. "Output element of S ",

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0$,

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :

$$
Z=\{0,1,
$$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :

$$
Z=\{0,1,-1,
$$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :

$$
Z=\{0,1,-1,2,
$$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :

$$
Z=\{0,1,-1,2,-2,
$$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ", "Output next element of S "

Any element x of S has specific, finite position in list. Consider the integers Z :

$$
Z=\{0,1,-1,2,-2, \ldots \ldots\}
$$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0,1,-1,2,-2, \ldots \ldots\}$
Alternatively:
$Z=\{\{0,1,2, \ldots\}$,

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0,1,-1,2,-2, \ldots \ldots\}$
Alternatively:
$Z=\{\{0,1,2, \ldots$,$\} and then \{-1,-2, \ldots\}\}$

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0,1,-1,2,-2, \ldots \ldots\}$
Alternatively:
$Z=\{\{0,1,2, \ldots$,$\} and then \{-1,-2, \ldots\}\}$
When do you get to -1 ?

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0,1,-1,2,-2, \ldots \ldots\}$
Alternatively:
$Z=\{\{0,1,2, \ldots$,$\} and then \{-1,-2, \ldots\}\}$
When do you get to -1 ? at infinity?

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.
"Output element of S ",
"Output next element of S "
Any element x of S has specific, finite position in list. Consider the integers Z :
$Z=\{0,1,-1,2,-2, \ldots \ldots\}$
Alternatively:
$Z=\{\{0,1,2, \ldots$,$\} and then \{-1,-2, \ldots\}\}$
When do you get to -1 ? at infinity?
Need to be careful.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows:

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows:
Get next element, x, of S,

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows: Get next element, x, of S, output only if $x \in T$.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows: Get next element, x, of S, output only if $x \in T$.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows:
Get next element, x, of S, output only if $x \in T$.
Implications:

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.
Enumerate T as follows:
Get next element, x, of S, output only if $x \in T$.

Implications:
Z^{+}is countable (because Z is countable).

Enumeration example.

All binary strings.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.

Enumeration example.

All binary strings.

$$
\begin{aligned}
& B=\{0,1\}^{*} . \\
& B=\{\phi,
\end{aligned}
$$

Enumeration example.

All binary strings.

$$
\begin{aligned}
& B=\{0,1\}^{*} . \\
& B=\{\phi, 0,
\end{aligned}
$$

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1$,

Enumeration example.

All binary strings.

$$
\begin{aligned}
& B=\{0,1\}^{*} . \\
& B=\{\phi, 0,1,00,
\end{aligned}
$$

Enumeration example.

All binary strings.

$$
\begin{aligned}
& B=\{0,1\}^{*} . \\
& B=\{\phi, 0,1,00,01,10,11,
\end{aligned}
$$

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$. ϕ is empty string.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$. ϕ is empty string.
For any string, it appears at some position in the list.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$. ϕ is empty string.
For any string, it appears at some position in the list.
If n bits, it will appear before position 2^{n+1}.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$.
ϕ is empty string.
For any string, it appears at some position in the list.
If n bits, it will appear before position 2^{n+1}.
Should be careful how you enumerate.

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$.
ϕ is empty string.
For any string, it appears at some position in the list.
If n bits, it will appear before position 2^{n+1}.
Should be careful how you enumerate.
$B=\{\phi ;, 0,00,000,0000, \ldots\}$

Enumeration example.

All binary strings.
$B=\{0,1\}^{*}$.
$B=\{\phi, 0,1,00,01,10,11,000,001,010,011, \ldots\}$.
ϕ is empty string.
For any string, it appears at some position in the list.
If n bits, it will appear before position 2^{n+1}.
Should be careful how you enumerate.
$B=\{\phi ;, 0,00,000,0000, \ldots\}$
Never get to 1!

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...

$$
0, \ldots, 1 / 2, . .
$$

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?
After $1 / 3$, which is after $1 / 4$, which is after $1 / 5 \ldots$

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?
After $1 / 3$, which is after $1 / 4$, which is after $1 / 5 \ldots$
A thing about fractions:

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?
After $1 / 3$, which is after $1 / 4$, which is after $1 / 5 \ldots$
A thing about fractions:
any two fractions has another fraction between it.

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?
After $1 / 3$, which is after $1 / 4$, which is after $1 / 5 \ldots$
A thing about fractions:
any two fractions has another fraction between it.
Can't even get to "next" fraction!

What about fractions?

Suppose we enumerate the (non-negative) rational numbers in order...
$0, \ldots, 1 / 2, .$.
Where is $1 / 2$ in list?
After $1 / 3$, which is after $1 / 4$, which is after $1 / 5 \ldots$
A thing about fractions:
any two fractions has another fraction between it.
Can't even get to "next" fraction!
Can't list in "order".

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$ E.g.: $(1,2),(100,30)$, etc.

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2},

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2}, then $S_{1} \times S_{2}$

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2}, then $S_{1} \times S_{2}$
has size $\left|S_{1}\right| \times\left|S_{2}\right|$.

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2}, then $S_{1} \times S_{2}$
has size $\left|S_{1}\right| \times\left|S_{2}\right|$.

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2},
then $S_{1} \times S_{2}$
has size $\left|S_{1}\right| \times\left|S_{2}\right|$.
So, does this mean $N \times N$ is countably infinite

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2},
then $S_{1} \times S_{2}$
has size $\left|S_{1}\right| \times\left|S_{2}\right|$.
So, does this mean $N \times N$ is countably infinite squared

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1,2),(100,30)$, etc.

For finite sets S_{1} and S_{2},
then $S_{1} \times S_{2}$
has size $\left|S_{1}\right| \times\left|S_{2}\right|$.
So, does this mean $N \times N$ is countably infinite squared ???

Pairs of natural numbers.

Enumerate in list:

Pairs of natural numbers.

Enumerate in list: $(0,0)$,

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0)$,

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1)$,

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0)$,

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1)$,

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

The pair (a, b), is in first $\approx(a+b+1)(a+b) / 2$ elements of list!

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

The pair (a, b), is in first $\approx(a+b+1)(a+b) / 2$ elements of list! (i.e., "triangle").

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

The pair (a, b), is in first $\approx(a+b+1)(a+b) / 2$ elements of list! (i.e., "triangle").

Countably infinite.

Pairs of natural numbers.

Enumerate in list:
$(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots \ldots$

The pair (a, b), is in first $\approx(a+b+1)(a+b) / 2$ elements of list! (i.e., "triangle").

Countably infinite.
Same size as the natural numbers!!

Rationals?

Positive rational number.

Rationals?

Positive rational number.
Lowest terms: a / b

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?
Negative rationals are countable.

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)
Put all non-negative rational numbers in a list. Same for negative.

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)
Put all non-negative rational numbers in a list. Same for negative.
Repeatedly and alternatively take one from each list.

Rationals?

Positive rational number.
Lowest terms: a / b
$a, b \in N$
with $\operatorname{gcd}(a, b)=1$.
Infinite subset of $N \times N$.
Countably infinite!
All rational numbers?
Negative rationals are countable. (Same size as positive rationals.)
Put all non-negative rational numbers in a list. Same for negative.
Repeatedly and alternatively take one from each list.
The rationals Q are countably infinite.

The reals.

Are the set of reals countable?

The reals.

Are the set of reals countable?

Lets consider the reals $[0,1]$.

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation. .500000000...

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation. .500000000... (1/2)

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162...

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
. $367879441 \ldots$

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
. $367879441 \ldots 1 / e$

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
. $367879441 \ldots$ 1/e
.632120558...

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
.367879441... 1/e
.632120558... $1-1 / e$

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
.367879441... 1/e
.632120558... 1 - $1 / e$. $345212312 . .$.

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
.367879441... 1/e
.632120558... 1 - $1 / e$
.345212312... Some real number

The reals.

Are the set of reals countable?
Lets consider the reals $[0,1]$.
Each real has a decimal representation.
.500000000... (1/2)
.785398162... $\pi / 4$
. $367879441 \ldots$ 1/e
.632120558... 1 - $1 / e$
.345212312... Some real number
We will use this representation to answer the question above!

Diagonalization.

Assume countable. There is a listing, L contains all reals.

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: .367879441...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...

1. .785398162...

2: . $367879441 \ldots$
3: .632120558...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...

1. .785398162...

2: .367879441...
3: .632120558...
4: .345212312...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number:

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: . 7

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: . 77

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
引
Construct "diagonal" number: . 776

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
引
Construct "diagonal" number: . 7767

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: . 77677

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number:

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .500000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .5000000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!

Diagonalization.

Assume countable. There is a listing, L contains all reals. For example
0: .500000000...
1: .785398162...
2: . $367879441 \ldots$
3: .632120558...
4: .345212312...
\vdots
Construct "diagonal" number: .77677...
Diagonal Number: Digit i is 7 if number i 's i th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!
Subset $[0,1]$ is not countable!!

All reals?

Subset $[0,1]$ is not countable!!

All reals?

Subset $[0,1]$ is not countable!!
What about all reals?

All reals?

Subset $[0,1]$ is not countable!!
What about all reals?
No.

All reals?

Subset $[0,1]$ is not countable!!
What about all reals?
No.
Any subset of a countable set is countable.

All reals?

Subset $[0,1]$ is not countable!!
What about all reals?
No.
Any subset of a countable set is countable.
If reals are countable then so is $[0,1]$.

Diagonalization: Review

1. Assume that a set S can be enumerated.

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\Longrightarrow t$ is not in the list.

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\Longrightarrow t$ is not in the list.
5. Show that t is in S.

Diagonalization: Review

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\Longrightarrow t$ is not in the list.
5. Show that t is in S.
6. Contradiction.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$ If both in $[0,1 / 2]$,

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't,

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't, different ranges

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't, different ranges $\Longrightarrow f(x) \neq f(y)$.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't, different ranges $\Longrightarrow f(x) \neq f(y)$. Bijection!

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{cr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ a division $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't, different ranges $\Longrightarrow f(x) \neq f(y)$. Bijection!
$[0,1]$ is same cardinality as nonnegative reals!

Another diagonalization.

The set of all subsets of N.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N:\{0\}$,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.
otherwise $i \notin D$.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.
otherwise $i \notin D$.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.
otherwise $i \notin D$.
D is different from i th set in L for every i.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$. otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.
otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.
D is a subset of N.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$.
otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.
D is a subset of N.
L does not contain all subsets of N.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,

Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$. otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.
D is a subset of N.
L does not contain all subsets of N.
Contradiction.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$. otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.
D is a subset of N.
L does not contain all subsets of N.
Contradiction.
Theorem: The set of all subsets of N is not countable.

Another diagonalization.

The set of all subsets of N.
Example subsets of $N: \quad\{0\},\{0, \ldots, 7\}$, evens, odds, primes,
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If i th set in L does not contain $i, i \in D$. otherwise $i \notin D$.
D is different from ith set in L for every i.
$\Longrightarrow D$ is not in the listing.
D is a subset of N.
L does not contain all subsets of N.
Contradiction.
Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)

Poll: Which of these are true?

Poll: Which of these are true?

(A) Integers are larger than Naturals.
(B) Integers are countable.
(C) Reals can't be enumerated: diagonal number not on list.
(D) Powerset of Naturals can be enumerated.

Poll: Which of these are true?

(A) Integers are larger than Naturals.
(B) Integers are countable.
(C) Reals can't be enumerated: diagonal number not on list.
(D) Powerset of Naturals can be enumerated.
(B), (C)

Summary.

- Bijections to equate cardinality of infinite sets

Summary.

- Bijections to equate cardinality of infinite sets
- Countable (infinite) sets

Summary.

- Bijections to equate cardinality of infinite sets
- Countable (infinite) sets
- Uncountable sets

Summary.

- Bijections to equate cardinality of infinite sets
- Countable (infinite) sets
- Uncountable sets
- Diagonalization

