Barber paradox.

Created by logician Bertrand Russell.

Village with just 1 barber (a man), all men clean-shaven.
Barber announces:
"I shave all and only those men who do not shave themselves."
Who shaves the barber?
Case 1: lt's the barber.
Case 2: Somebody else
Cannot answer that question in either case! Paradox!!!

Implementing HALT.

HALT(P,I)
P - program
I - input.
Determines if $P(I)$ (r run on $I)$ halts or loops forever.
Run P on I and check.
How long do you wait?

Russell's Paradox: Assuming Existence of Set of All

 SetsNaive Set Theory: Any definable collection is a set.

$$
\begin{equation*}
\exists y \forall x(x \in y \Longleftrightarrow P(x)) \tag{1}
\end{equation*}
$$

y is the set of elements that satisfies the proposition $P(x)$.
$P(x)=x \notin x$.
There exists a y that satisfies statement 1 for $P(\cdot)$.
Take $x=y$.

$$
y \in y \Longleftrightarrow y \notin y .
$$

Contradiction!

Halt does not exist.

$\operatorname{HALT}(P, I)$
 P-program
 I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT
Proof Idea: Proof by contradiction, use self-reference.

Is this stuff actually useful?

Problem 1: Verify that my program is correct

Problem 2: Check that the compiler works correctly!
(output program is equivalent to its input program)
How about.. Check that the compiler terminates on a certain input.

HALT(P, I)

P - program
l - input.
Determines if $P(I)$ (P run on I) halts or loops forever.
Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Program is a text string.
Text string can be an input to a program
Program can be an input to a program.

Halt and Turing.

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$.
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT
There is text that is the program Turing
Can run Turing on Turing!
Does Turing(Turing) halt?
Case 1: Turing(Turing) halts
\Longrightarrow then HALT(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Case 2: Turing(Turing) loops forever
\Longrightarrow then HALT(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Contradiction. Program HALT does not exist!

Another view of proof: diagonalization.
Any program is a fixed length string
Fixed length strings are enumerable
Program halts or not any input, which is a string.

	P_{1}	P_{2}	P_{3}

P_{1}	H	H	L
P_{2}	L	L	H
P_{2}	L	H	H

P_{3} L H H
$\begin{array}{cccc}\vdots & \vdots & \vdots & \vdots \\ \text { Halt(P,P) } & \text { diagonal. }\end{array}$
Turing - is not Halt.
and is different from every P_{i} on the diagonal.
Turing is not on list. \Longrightarrow Turing is not a program
But Turing can be constructed as a program if the program Halt exists Halt does not exist

Summary: computability.

Computer Programs are interesting objects
 Mathematical objects.

Formal Systems.
Computer Programs cannot completely "understand" computer programs.
Example: no computer program can tell if any other computer program HALTS.
Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes P.
Assume there is HALT.
DIAGONAL flips answer.
Loops if P halts, halts if P loops
What does Turing do on turing? Doesn't loop or HALT.
More on this topic in CS 172.
Computation is a lens for other action in the world

Turing machine

A Turing machine

- an (infinite) tape with characters
- be in a state, and read a character
- move left, right, and/or write a character.

Universal Turing machine

- an interpreter program for a Turing machine
- where the tape could be a description of a ...Turing machine

Now that's a computer! (not far from today's computers)

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)
Used λ calculus....which is... a programming language!!! Just like Python, C, Javascript, ...
Gödel: Incompleteness theorem.
Any formal system either is inconsistent or incomplete. Inconsistent: A false sentence can be proven
incomplete: There is no proof for some sentence in the system
Along the way: "built" computers out of arithmetic.
Showed that every mathematical statement corresponds to an Showed that every

