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Second half of the semester: Probability.

A bag contains a set of colored balls:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

Today: Counting!

After the Midterm: Probability. Professor Sinclair.
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Outline

1. Counting.

2. Tree

3. Rules of Counting

4. Sample with/without replacement where order does/doesn’t
matter.



Count?

How many outcomes possible for k coin tosses?
How many handshakes for n people?
How many 10 digit numbers?
How many 10 digit numbers without repeating digits?



Using a tree of possibilities...

How many 3-bit strings?

How many different sequences of three bits from {0,1}?
How would you make one sequence?
How many different ways to do that making?
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8 leaves which is 2×2×2. One leaf for each string.
8 3-bit strings!
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First Rule of Counting: Product Rule

Objects made by choosing from n1, then n2, . . ., then nk
the number of objects is n1 ×n2 · · ·×nk .

n1

×n2

×n3

· · · · · · · · · · · ·
In picture, 2×2×3 = 12
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Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2×2 · · · ×2 = 2k

How many 10 digit numbers (leading zeroes are OK)?

10 ways for first choice, 10 ways for second choice, ...
10×10 · · · ×10 = 1010

How many 10 digit numbers (no leading zeroes)?

9 ways for first choice, 10 ways for second choice, ...
9×10 · · · ×10 = 9×109

How many n digit base m numbers?

m ways for first, m ways for second, ...
mn
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Functions, polynomials.

How many functions f mapping S to T ?

|T | ways to choose for f (s1), |T | ways to choose for f (s2), ...

....|T ||S|

How many polynomials of degree at most d modulo p?

p ways to choose for first coefficient, p ways for second, ...
...pd+1

p values for first point, p values for second, ...
...pd+1
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Permutations.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... 10∗9∗8 · · · ∗1 = 10!.1

How many different samples of size k from n numbers without
replacement.

n ways for first choice, n−1 ways for second,
n−2 choices for third, ...

... n ∗ (n−1)∗ (n−2) · ∗(n−k +1) = n!
(n−k)! .

How many orderings of n objects are there?
Permutations of n objects.

n ways for first, n−1 ways for second,
n−2 ways for third, ...

... n ∗ (n−1)∗ (n−2) · ∗1 = n!.

1By definition: 0! = 1. n! = n(n−1)(n−2) . . .1.
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One-to-One Functions.

How many one-to-one functions from S to S?

|S| choices for f (s1), |S|−1 choices for f (s2), ...

So total number is |S|× |S|−1 · · ·1 = |S|!
A one-to-one function (from S to S) is a permutation!
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Counting sets..when order doesn’t matter.

How many sets of 5 playing cards (“poker hands”)?

52×51×50×49×48 ???

Are A,K ,Q,10,J of spades
and 10,J,Q,K ,A of spades the same?
Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.2

Number of orderings for a poker hand: 5!
52×51×50×49×48

5!Can write as...
52!

5!×47!
Generic: ways to choose 5 out of 52 possibilities.

2When each unordered object corresponds equal numbers of ordered
objects.
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When order doesn’t matter.

Choose 2 out of n?

n× (n−1)

2

=
n!

(n−2)!×2

Choose 3 out of n?

n× (n−1)× (n−2)

3!

=
n!

(n−3)!×3!

Choose k out of n?

n!
(n−k)!

×k !

Notation:
(n

k

)
and pronounced “n choose k .”
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Simple Practice.

How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways to choose second, 1 for last.
=⇒ 3×2×1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A!
total orderings of 7 letters. 7!
total “extra counts” or orderings of two A’s? 3!

Total orderings? 7!
3!

How many orderings of letters in MISSISSIPPI?

4 S’s, 4 I’s, 2 P’s.
11 letters total!

11! ordered objects!
4!×4!×2! ordered objects per “unordered object”
=⇒ 11!

4!4!2! .
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Sampling...

Sample k items out of n

Without replacement:
Order matters: n×n−1×n−2 . . . ×n−k +1 = n!

(n−k)!
Order does not matter:

Second Rule: divide by number of orders – “k !”
=⇒ n!

(n−k)!k ! .
“n choose k ”

With Replacement.
Order matters: n×n× . . .n = nk

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.
Set: 1,2,2 3!

2! orderings map to it.

How do we deal with this situation?!?!
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New Technique: Stars and Bars....

How many ways can Bob and Alice split 5 dollars?

For each of 5 dollars pick Bob or Alice(25), see what results.

5 dollars for Bob and 0 for Alice:
one ordered set: (B,B,B,B,B).

4 for Bob and 1 for Alice:
5 ordered sets: (A,B,B,B,B) ; (B,A,B,B,B); ...

Well, we can list the possibilities.
0+5, 1+4, 2+3, 3+2, 4+1, 5+0.

For 2 numbers adding to k , we get k +1.

For 3 numbers adding to k? More than 3?
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For 2 numbers adding to k , we get k +1.

For 3 numbers adding to k? More than 3?
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Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.

Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |

⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |

⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.

Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |

⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |

⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.

Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many ways to add up n natural numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ⋆⋆⋆⋆⋆.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: ⋆⋆ |⋆ |⋆⋆.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |⋆ |⋆⋆⋆⋆.

Each split =⇒ a sequence of stars and bars.
Each sequence of stars and bars =⇒ a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!



Stars and Bars.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.(7
2

)
ways to do so and

(7
2

)
ways to split 5$ among 3 people.

Ways to add up n natural numbers to sum to k? or

“ k from n with replacement where order doesn’t matter.”

In general, k stars n−1 bars.

⋆⋆ |⋆ | · · · |⋆⋆.

n+k −1 positions from which to choose n−1 bar positions.(
n+k −1

n−1

)
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Stars and Bars Poll

Mark what’s correct:
(A) ways to split 5 dollars among 3:

(7
2

)
(B) ways to split n dollars among k:

(n+k−1
k−1

)
(C) ways to split 3 dollars among 5:

(7
5

)
(D) ways to split 5 dollars among 3:

(7
5

)

(A),(B),(D) are correct.
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Combinatorial Proofs - 1

A technique to prove identities by counting arguments!

Theorem:
(n

k

)
=
( n

n−k

)
Proof: How many subsets of size k?

(n
k

)
How many subsets of size k?
Choose a subset of size n−k

and what’s left out is a subset of size k .
Choosing a subset of size k is same

as choosing n−k elements to not take.
=⇒

( n
n−k

)
subsets of size k .
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Combinatorial Proofs - 2

Theorem:
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
.

Proof: How many size k subsets of n+1?

(n+1
k

)
.

How many size k subsets of n+1?
How many contain the first element?
Chose first element, need k −1 more from remaining n elements.
=⇒

( n
k−1

)
How many don’t contain the first element ?
Need to choose k elements from remaining n elts.
=⇒

(n
k

)
Sum Rule: size of union of disjoint sets of objects.

Without and with first element → disjoint.

So,
( n

k−1

)
+
(n

k

)
=
(n+1

k

)
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Binomial Theorem

Theorem: 2n =
(n

n

)
+
( n

n−1

)
+ · · ·+

(n
0

)

Proof: How many subsets of {1, . . . ,n}?
Construct a subset with sequence of n choices:

element i is in or is not in the subset: 2 poss.
First rule of counting: 2×2 · · ·×2 = 2n subsets.

How many subsets of {1, . . . ,n}?(n
i

)
ways to choose i elts of {1, . . . ,n}.

Sum over i to get total number of subsets..which is also 2n.
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

by adding number of subsets of size 1, 2, 3,. . .

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T , |S∪T |= |S|+ |T |− |S∩T |.

T ST S
In T . =⇒ |T |

T S In S. =⇒ + |S|
Elements in S∩T are counted twice.

S∩T
Subtract. =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |

Inclusion/Exclusion Rule: For any S and T ,
|S∪T |= |S|+ |T |− |S∩T |.
General version of the above rule (for n sets) in the notes.

Example: How many 10-digit numbers (leading 0s OK) have 7 as
their first or second digit?

S = numbers with 7 as first digit.|S|= 109

T = numbers with 7 as second digit. |T |= 109.

S∩T = numbers with 7 as first and second digit. |S∩T |= 108.

Answer: |S|+ |T |− |S∩T |= 109 +109 −108.
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Summary.

First rule: n1 ×n2 · · ·×n3.

k Samples with replacement from n items: nk .
Sample without replacement: n!

(n−k)!

Second rule: when order doesn’t matter divide (when possible)

Sample without replacement and order doesn’t matter:
(n

k

)
= n!

(n−k)!k ! .
“n choose k ”

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn’t matter:
(k+n−1

n

)
.

Combinatorial Proofs: Prove identities using counting arguments
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Discrete Math for CS... and your future?

Covered many topics:

Logic, Proof strategies, Induction, Stable
Matching, Graphs, Modular Arithmetic, Polynomials, Countability,
Computability, Counting...

Define precisely. Understand properties of discrete structures. And
build from there.

Tools: formal reasoning; critical thinking through proofs; careful,
rigorous analysis.

Gives power to your creativity and in your pursuits!

....and more to come! Probability Theory!
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