CS 70 - Spring 2024
Lecture 15: March 7

Today: Intro. to Discrete Probability
Q: What is pubability?
A: A previse way of talking/veasaning about uncertainty

In Computer Science:

- vandomness in data, comm. channels etc.
- probabilistic algorithms

Some questions we will answer:

1. If we randomly assign 1000 jobs to 1000 processors what's the probable largest load on a processor?
2. In a game of chance at a casino, how likely are we to go bankrupt before we in $\$ 1,000$?
3. If a certain medical test comes up negative, what's the chance that the patient has the disease?
4. Can uncertainty sometimes lead to better algorithms?

We always start with a Random Experiment
Example 1: Toss a fair coin

$$
\begin{array}{ll}
\hline \begin{array}{c}
\text { Possible outcomes : } \\
\text { sample space) }
\end{array} & H \text { (Heads) } \\
\text { Probabilities: } & H: 1 / 2 \\
& T: 1 / 2
\end{array}
$$

Sample space: $\quad \Omega=\{H, T\}$
Probabilities: $\operatorname{Pr}[H]=\operatorname{Pr}[T]=1 / 2$
Outcomes + Probabilities = Probability Space sample Space

Example 2 : Roll a fair (6-sided) die
Sample space: $\Omega=\{1,2,3,4,5,6\}$
Probabilities: $\operatorname{Pr}[1]=\operatorname{Pr}[2]=\ldots=\operatorname{Pr}[6]=1 / 6$

Example 3: Toss a biased coin

$$
\Omega=\{H, T\}
$$

Probabilities: $\quad \operatorname{Pr}[H]=p \quad P_{r}[T]=1-p$
where $0 \leqslant p \leqslant 1$
$[p=1 / 2$ is fair coin]

Example 4: Toss two fair coins

$$
\begin{aligned}
& \Omega=\{H H, H T, T H, T T\} \\
& \operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=1 / 4
\end{aligned}
$$

Example 5: Toss two biased coins, both having Heads probability p

$$
\Omega=\mathcal{p}^{2} \underset{p(1-p)}{\{H H, H T, T H, T T\}}
$$

Note: $p^{2}+2 p(1-p)+(1-p)^{2}=1 \quad \forall p \in[0,1]$

$$
\begin{gathered}
\| \prime \\
(p+(1-p))^{2}
\end{gathered}
$$

(binomial thu.)

Properties of a Probability Space
Ω : set of outcomes/sample space $\omega \in \Omega$: an out come / sample point
$\operatorname{Pr}[\omega]$: probability of $\omega \quad(\forall \omega \in \Omega)$
Probabilities must always satisfy:
(i) $\forall \omega \in \Omega, \quad 0 \leqslant \operatorname{Pr}[\omega] \leqslant 1$
(ii) $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$

Uniform Probability Space
In a uniform prob. space, all outcomes are equally likely, ie.,

$$
\operatorname{Pr}[\omega]=\frac{1}{|\Omega|} \quad \forall \omega \in \Omega
$$

Examples: Tossing one (ormore) fir coins

- Rolling one (or move) fair dice
- Dealing a poker hand

Questions about Random Experiments
E.g. Toss two fair coins.

What's the probability exactly one cones up H ?

$$
\Omega=\{H H, H T, T H, T T\}
$$

Answer: $\operatorname{Pr}[$ exactly one Head$]=\operatorname{Pr}[\mathrm{HT}]+\operatorname{Pr}[T \mathrm{H}]$

$$
=1 / 4+1 / 4=1 / 2
$$

Events
An event, E, is any subset of the sample space, ie, $E \subseteq \Omega$.
The probability of E is defined as

$$
\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

$E=$ exactly one Head

Events in Uniform Prob. Spaces
In a uniform pro. space, $\operatorname{Pr}[\omega]=\frac{1}{(\Omega)} \quad \forall \omega \in \Omega$ and so:

$$
\begin{aligned}
& \text { so: } \\
& \operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]=\frac{|E|}{|\Omega|}, ~
\end{aligned}
$$

So, in uniform spaces,

$$
\text { Probability }=\text { Counting }
$$

Example: Roll two fair dice What is Pr [sum is 8]?

$$
\begin{aligned}
& 6 \cdot \cdot \cdot \quad|\Omega|=36 \\
& P[\omega]=1 / 36 \quad \forall \omega \in \Omega \\
& \Omega=\left\{(i, j): \begin{array}{l}
1 \leq i \leq 6 \\
1 \leq j \leq 6
\end{array}\right\} \\
& \omega=(i, j) \\
& \begin{array}{l}
\text { cog. } \\
\left.=(i,)_{\omega}\right) \\
\omega
\end{array}=(3,6)
\end{aligned}
$$

Event $E_{8}=$ sum is 8: $\operatorname{Pr}\left[E_{8}\right]=\frac{\left|E_{8}\right|}{|\Omega|}=\frac{5}{36}$
Event $E_{2}=$ sum is 2: $\operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}=\frac{1}{36}$

Example: Toss a fair coin 20 times

$$
\Omega=\{H H \ldots H, H H \ldots H T, \ldots, T T \ldots T\} \quad|\Omega|=2^{20}
$$

Q1: Which outcome is move likely?

$$
\omega_{1}=H H H H H H H H H H H H H H H H H H H H
$$

[20 Heads]
$\omega_{2}=$ THTHHTTHTTTHHTHTHHTH
[10 Heads]
AI:

$$
\begin{aligned}
& \operatorname{Pr}\left[\omega_{1}\right]=1 / 2^{20} \\
& \operatorname{Pr}\left[\omega_{2}\right]=1 / 2^{20}
\end{aligned}
$$

Example: Toss a fair coin 20 times

$$
\Omega=\{H H \ldots H, H H \ldots H T, \ldots, T T \ldots T\} \quad|\Omega|=2^{20}
$$

Q1: Which outcome is move likely?

$$
\begin{aligned}
& \omega_{1}=H \text { [20 Heads] } \\
& \omega_{2}=\text { THTHHTTHTTTHHTHTHHTH [10 Heads] }
\end{aligned}
$$

A-1 : $\operatorname{Pr}\left[\omega_{1}\right]=$

$$
\operatorname{Pr}\left[\omega_{2}\right]=
$$

Q2: Which event is more likely?

$$
E_{20}=20 \text { Heads }
$$

$$
E_{10}=10 \text { Heads }
$$

AL: $\operatorname{Pr}\left[E_{20}\right]=1 / 2^{20} \approx 10^{-6}$

$$
\begin{aligned}
& \operatorname{Rr}\left[E_{20}\right]=1 / 2^{20} \approx 10^{-6} \\
& \operatorname{Pr}\left[E_{10}\right]=\frac{\left|E_{2}\right|}{|\Omega|}=\frac{\binom{20}{10}}{2^{20}}=\frac{184,756}{2^{20}} \approx 0.176
\end{aligned}
$$

Toss a fair coin 20 times
Events $E_{i}=$ exactly i Heads $(0 \leq i \leq 20)$

Example: Poker Hands
$\Omega=$ set of all possible 5 -card poker hands $\quad|\Omega|=\binom{52}{5}$
$P[\omega]=\frac{1}{|\Omega|} \forall$ hands $\omega \in \Omega$
Events: $\quad E_{\text {Ace }}=$ hand contains at least one ace
$E_{\text {Flush }}=$ all cards belong to same suit
$E_{\text {st Flush }}=$ flush \& all cards in sequence

Example: Non-unifonn \neq wo b. Space
Toss two biased coins, Heads pub. p
Event $E=$ exactly one Head

$$
\begin{aligned}
\operatorname{Pr}[E]= & \operatorname{Pr}[H T]+\operatorname{Pr}[T H]=2 p(1-p) \\
& \operatorname{P(1-p)}(1-p) p
\end{aligned}
$$

Example: Monty Hall Problem

1. Host places prize behind a randomly chosen door
2. You pick some door (say, Door \#1)
3. Host opens one of the other doors that has a goat
4. Host offers you the option of sticking or switching doors

Q: What should you do?
"Monty Hall Problem" - inspired by 1970s game show "Let's Make a Deal"

Famously dismissed in "Ask Marilyn" column n in Parade magazine by Marilyn sos Savant ~ 1990

Probability space (assuming you initially pick Door \#1):

$$
\Omega=\{(1,2),(1,3),(2,3),(3,2)\}
$$

$$
\operatorname{Pr}[(1,2)]=\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}
$$

(host may open either door)

$$
\operatorname{Pr}[(1,3)]=\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}
$$

$$
\operatorname{Rr}[(2,3)]=\frac{1}{3}
$$

$$
\operatorname{Pr}[(3,2)]=\frac{1}{3}
$$

(
(host must open Door \#3)
(———————
"Sticking" Strategy: $\operatorname{Pr}\left[\begin{array}{l}\text { min } \\ \text { sicking }\end{array}\right]=1 / 6+1 / 6=1 / 3 \&$
"Snitching" strategy: $\operatorname{Pr}\left[\begin{array}{c}\text { win by } \\ \text { switching }\end{array}\right]=1 / 3+1 / 3=2 / 3 \leftrightarrow$

Notes

1. Illustrates importance of understanding / carefully defining the probability space
2. Think about the game with 100 doors:

12
...
... 99100

- You pick (say) Door \#1
- Host opens all but one door (leaving just 2 doors)
-Would you switch?

$$
\operatorname{Pr}[\text { min by suitichin }]=99 / 100
$$

Summary

- Definition of a probability space:
$\Omega=$ set of outcomes
$\operatorname{Pr}[\omega]=$ probability for each $\omega \in \Omega$
- Events $E \subseteq \Omega$

$$
\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

- Uniform probability space:

$$
\begin{array}{ll}
\operatorname{Pr}[\omega]=\frac{1}{|\Omega|} & \forall \omega \in \Omega \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|} & \forall E \subseteq \Omega
\end{array}
$$

