CS7O - Spring 2024
Lecture 16 - Mavch 12

Last Lecture:

- Definition of a probability space:
$\Omega=$ set of outcomes
$\operatorname{Pr}[\omega]=$ probability for each $\omega \in \Omega$
- Events $E \subseteq \Omega$

$$
\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

- Uniform probability space:

$$
\begin{array}{ll}
\operatorname{Pr}[\omega]=\frac{1}{|\Omega|} & \forall \omega \in \Omega \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|} & \forall E \subseteq \Omega
\end{array}
$$

Ref: Note la

Today:

- Conditional probability
- Intersections \& unions of events
- Bayes Rule \& inference

Ref: Note 14

Conditional Probability
Recall: 5-card poker hand
5 -card poker hand
\rightarrow uniform poo. space with $|\Omega|=\binom{52}{5}$
Event $E_{\text {flush }}=$ all five cards of same suit

Now suppose your first 4 cards are all \rangle What is now $\operatorname{Pr}\left[E_{\text {flush }}\right]$?

$$
\operatorname{Pr}\left[E_{\text {Flush }} \mid \diamond \diamond \diamond \Delta\right]=\frac{\text { \#remaining } \Delta}{\text { \#vemaning cards }}=\frac{9}{48}=0.19
$$

Defn: For any events A, B with $\operatorname{Pr}[B]>0$, the conditional probability of A given B is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Rr}[B]}
$$

$$
\begin{aligned}
& \operatorname{Pr}[A]=\frac{4}{11} \\
& \operatorname{Pr}[A \mid B]=\frac{2}{5}
\end{aligned}
$$

For each sample point $\omega \in B: \operatorname{Pr}[\omega] \rightarrow \frac{\operatorname{Pr}[\omega]}{\operatorname{Pr}[B]}$

$$
\begin{aligned}
& \cdots \cdots \cdots: \quad \operatorname{Pr}[\omega] \rightarrow 0 \\
& \text { Then } \operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega] \longrightarrow \sum_{\omega \in A \cap B} \frac{P[\omega]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{R[B]}}
\end{aligned}
$$

Example: Flush

$$
\nabla\left[E_{\text {Fush }}\right]=\frac{\left|E_{\text {Fush }}\right|}{|\Omega|}=0.002
$$

$$
\begin{aligned}
\operatorname{Pr}\left[E_{\text {Fluh }} \mid E_{4 \diamond}\right] & =\frac{\left.\mid E_{\text {fluo }} n E_{40}\right)}{\left|E_{4 \diamond}\right|} \\
& =\frac{\binom{3}{5}}{\binom{13}{4} \times 48} \\
& =\frac{9}{48}
\end{aligned}
$$

Example: Dice Game
Roll 2 dice - you win if sum is $\geqslant 9$

$$
\operatorname{Pr}[\mathrm{win}]=\frac{|W|}{|\Omega|}=\frac{10}{36}=\frac{5}{18}
$$

Define $E_{i}=$ "red die shows i

$$
\begin{aligned}
\operatorname{Pr}\left[\omega \mid E_{6}\right] & =\frac{\operatorname{Pr}\left[\omega \cap E_{6}\right]}{\operatorname{Pr}\left[E_{6}\right]} \\
& =\frac{4 / 36}{1 / 6}=\frac{2}{3}>\operatorname{Pr}[\omega] \\
\operatorname{Pr}\left[\omega \mid E_{3}\right] & =\frac{\operatorname{Pr}\left[\omega \cap E_{3}\right]}{\operatorname{Pr}\left[E_{3}\right]} \\
& =\frac{1 / 36}{1 / 6}=\frac{1}{6}<\operatorname{Pr}[\omega]
\end{aligned}
$$

Example: Coin Tossing
Toss a fair coin 20 times
$E_{i}=$ "ith toss comes up Heads"

$$
\operatorname{Pr}\left[E_{i}\right]=1 / 2 \quad \forall i
$$

Suppose the first 19 tosses all come up Heads What is now $\operatorname{Pr}\left[E_{20}\right]$?

$$
\begin{aligned}
\operatorname{Pr}\left[E_{20} \mid E_{1} \cap \ldots \cap E_{19}\right]=\frac{\operatorname{Pr}\left[E_{1} \cap \ldots \cap E_{20}\right]}{\operatorname{Pr}\left[E_{1} \cap \ldots \cap E_{19}\right]} & =\frac{1 / 2^{20}}{1 / 2^{90}} \\
& =\frac{1}{2}=\operatorname{Pr}\left[E_{20}\right]
\end{aligned}
$$

We say that E_{20} is independent of E_{1}, \ldots, E_{19}

Correlation
We have seen that $\operatorname{Pr}[A \mid B]$ can be $\left\{\begin{array}{l}\geq \\ \frac{<}{<}\end{array}\right\} \operatorname{Pr}[A]$ $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] \rightarrow A, B$ positively correlated
$\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] \rightarrow A, B$ negatively correlated
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \longrightarrow A, B$ independent
E.g. Uniform prob. space over US population
$A=$ "gets lung cancer" $B=$ "is a smoker"
$\operatorname{Pr}[A \mid B] \approx 1.17 \times \operatorname{Pr}[A] \Rightarrow A, B$ positively correlated
Note: This doesn't necessarily imply that smoking causes lung cancer

Independence
Defu: Events A, B are independent if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]
$$

or equivalently if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \times \operatorname{Pr}[B]
$$

[Equivalent because $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$]

Independent or Not ?

1. 20 fair coin tosses
$A=$ all 20 tosses ave H
$B=$ first 19 tosses one H
2. Roll 2 dice
$A=\operatorname{sum}$ is $\geqslant 10$
$B=$ first die shows 4

3. Toss 3 balls nears into 3 bins
$A=$ bin \#1 is empty
$B=$ bin \#2 is empty

Mutual Independence
Defy: Events A_{1}, \ldots, A_{n} are mutually independent if for all subsets $I \subseteq\{1, \ldots, n\}$

$$
\operatorname{Rr}\left[\bigcap_{i \in I} A_{i}\right]=\prod_{i \in I} \operatorname{Pr}\left[A_{i}\right]
$$

Example: 2 fain coinflips
A_{1} : "first flip is $H "$
A_{2} : "second flip is H^{\prime}

$$
\operatorname{Pr}\left[A_{2}\right]=
$$

A_{3} : "both flips the same $\left(H H\right.$ orT)" $\quad \operatorname{Pr}\left[A_{3}\right]=$
A_{1}, A_{2} : independent (obvious)
$A_{1}, A_{3}: \operatorname{Pr}\left[A_{1} \cap A_{3}\right]=\operatorname{Pr}[H H]=1 / 4=\operatorname{Pr}\left[A_{A}\right] \operatorname{Pr}\left[A_{3}\right]$
A_{2}, A_{3} : same
BuT: $\operatorname{Pr}\left[A_{1} \cap A_{2} \cap A_{3}\right]=$

Independent Coin Flips
We often use independence to define prob. spaces
Example: Flipping a biased coin (Heads pro, p) trice We want the Slips to be independent, e.g.,

$$
\begin{aligned}
\operatorname{Rr}[H T] & =\operatorname{Pr}[1 \text { st is } H] \times \underbrace{\operatorname{Pr}[\text { Iud is } H \mid \text { |st is } H]} \\
& =P \times(1-P) \quad \begin{aligned}
\operatorname{Pr}[\text { Ind is } H] \\
\text { (independence) }
\end{aligned}
\end{aligned}
$$

So we get

More generally, with n flips, for any seQ. with i Heads and $n-i$ Tails,

$$
\operatorname{Pr}[\omega]=p^{i}(1-p)^{n-i}
$$

Jutersections: Product Rule
Recall: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$
This implies ...
Product Rule: For any events A, B

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \times \operatorname{Pr}[B]=\operatorname{Pr}(B \mid A] \times A \cdot[A]
$$

Move generally...
Product Rule: For any events A_{1}, \ldots, A_{n}

$$
\operatorname{Pr}\left[A_{1} \cap \ldots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \times \operatorname{Rr}\left[A_{2} \mid A_{1}\right] \times \ldots \times \operatorname{Rr}\left[A_{n} \mid A_{1} \cap \ldots A_{n}\right]
$$

Product Rule: For any events A_{1}, \ldots, A_{n}

$$
\operatorname{Pr}\left[A_{1} \cap \ldots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \times \operatorname{Rr}\left[A_{2} \mid A_{1}\right] \times \ldots \times \operatorname{Rr}\left[A_{n} \mid A_{1} \cap \ldots A_{n}\right]
$$

Proof: By induction on n.
Base case $n=2$: basic product rule for 2 events Inductive step $(n \geqslant 3)$:

$$
\begin{aligned}
& \operatorname{Pr}[\underbrace{A_{1} \cap \ldots \cap A_{n-1}}_{B} \cap A_{n}]= \operatorname{Pr}[B] \times \operatorname{Pr}\left[A_{n} \mid B\right] \\
& \Downarrow \operatorname{lind} \text { Myopresis } \\
&=\operatorname{Br}\left[A_{1}\right] \times \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \times \ldots \times\left[A_{n-1} \mid A_{n} \cap A_{n n}\right] \\
& \times \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right]
\end{aligned}
$$

Unions of Events
Another dice game:
Roll two fair dice - you win if you roll at least one 6
$\operatorname{Pr}[$ roll 6 on we die $]=1 / 6$

$$
\operatorname{Pr}[\text { Win }]=\operatorname{Pr}[\text { roll } 6 \text { on either die }]=1 / 6+1 / 6=1 / 3 ?
$$

What if you roll 10 dice?

$$
\operatorname{Pr}\left[\omega_{\text {in }}\right]=1 / 6+\cdots+1 / 6=\frac{10}{6} \quad ? ? ?
$$

Problem: You may roll more than one 6 Rolling 6's are not disjoint events

Thu: For any events A, B

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Proof:

$$
\begin{aligned}
\operatorname{Pr}[A \cup B] & =\sum_{\omega \in A \cup B} \operatorname{Pr}[\omega] \\
& =\sum_{\omega \in A} \operatorname{Pr}[\omega]+\sum_{\omega \in B} \operatorname{Pr}[\omega]-\sum_{\omega \in A \cap B} \operatorname{Pr}[\omega] \\
& =\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
\end{aligned}
$$

Note: If A, B ave disjoint $(A \cap B=\varnothing)$ then $P r[A \cup B]=$ $P([A]+P, C B]$

Example:
Another dice game:
Roll two fair dice - you win if you roll at least one 6
$\operatorname{Pr}[$ roll 6 on we die $]=1 / 6$
$A=\operatorname{roll} 6$ on first die
$B=$ roll 6 on second die

$$
\begin{aligned}
\operatorname{Pr}\left[\omega_{\operatorname{lin}}\right]=\operatorname{Pr}[A \cup B] & =\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B] \\
& =1 / 6+1 / 6-1 / 36 \\
& =11 / 36
\end{aligned}
$$

Inclusion -Exclusion
More generally, for any events A_{1}, \ldots, A_{n}

$$
\operatorname{Pr}\left[A_{1} \cup \ldots \cup A_{n}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right]-\sum_{i<j} \operatorname{Pr}\left[A_{i} \cap A_{j}\right]
$$

$$
\begin{aligned}
& +\sum_{i<j<k} \operatorname{Pr}\left[A_{i} \cap A_{j} \cap A_{k}\right] \\
& -\quad- \\
& \pm \operatorname{Pr}\left[A_{1} \cap \ldots \cap A_{n}\right]
\end{aligned}
$$

Proof: See inclusion-exclusion under "Counting"

Union Bound
Thu: For any events A_{1}, \ldots, A_{n}

$$
\operatorname{Pr}\left[A_{1} \cup \ldots \cup A_{n}\right] \leqslant \operatorname{Pr}\left[A_{1}\right]+\ldots+\operatorname{Pr}\left[A_{n}\right]
$$

Proof: $\operatorname{Pr}\left[\bigcup_{i} A_{i}\right]=\sum_{\omega \in \cup A_{i}} \operatorname{Pr}[\omega]$

$$
\leq \sum_{\omega \in A_{1}} \operatorname{Pr}[\omega]+\cdots+\sum_{\omega \in A_{n}} \operatorname{Pr}[\omega]
$$

Later: We will see how useful this very simple upper bound can be!

Law of Total Probability
If A_{1}, \ldots, A_{n} are pairwise disjoint ($\left.A_{i} \cap A_{j}=\varnothing \forall i \neq j\right)$ and $A, \cup \ldots \cup A_{n}=\Omega$, then for any event B

$$
\operatorname{Rr}[B]=\sum_{i=1}^{n} \operatorname{Pr}\left[B \cap A_{i}\right]
$$

Poof: The events $B \cap A_{i}$ are pairnise disjoint and $B=U_{i}\left(B \cap A_{i}\right)$

Bayes Rule: For any events A, B with $\operatorname{Pr}[A]>0$, $\operatorname{Pr}[B]>0$, we have

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

Proof: Statement is equivalent to

$$
\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]
$$

This is the because both sides $=\operatorname{Pr}[A \cap B]$

Bayes rule allows us to "flip the conditioning around), from $\operatorname{Pr}[B \mid A]$ to $\operatorname{Pr}[A \mid B]$

Example 1: Two coins, Heads probs. $p=1 / 2$ and $p=3 / 5$

- pick a coin u.a.r. ("uniformly at random")
- Hip the chosen coin

Suppose the flipped co in comes up Heads What is the prob. We picked the biased coin?
$A=$ "picked biased coin
$B=$ "coin comes up Heads"
We know:

$$
\begin{array}{ll}
\operatorname{Pr}[A]=1 / 2 \\
\operatorname{Pr}[B \mid A]=3 / 5 & \operatorname{Pr}[B \mid \bar{A}]=1 / 2
\end{array}
$$

Goal: Compute $\operatorname{Pr}[A \mid B]$
$A="$ picked biased coin
$B=$ "coin comes up Heads"
We know:

$$
\begin{aligned}
& \operatorname{Pr}[A]=1 / 2 \\
& \operatorname{Pr}[B \mid A]=3 / 5 \quad \operatorname{Pr}[B \mid \bar{A}]=1 / 2
\end{aligned}
$$

Goal: Compute $\operatorname{Pr}[A \mid B]$
Bayes Rule : $\operatorname{Pr}(A \mid B]=\frac{\operatorname{Rr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}=\frac{3 / 5 \times 1 / 2}{\operatorname{Pr}[B]}=\frac{3 / 10}{\operatorname{Pr}[B]}$
What is $\operatorname{Pr}[B]$?
Total Probability:

$$
\begin{aligned}
\operatorname{Pr}[B] & =\operatorname{Pr}(B \mid A] \operatorname{Pr}[A]+\operatorname{Pr}[B \mid \bar{A}] \operatorname{Pr}[\bar{A}] \\
& =\left(\frac{3}{5} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2}\right)=11 / 20
\end{aligned}
$$

So $\operatorname{Pr}[A \mid B]=\frac{3 / 10}{12 / 20}=6 / 11$

Updated Bayes Rule

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]+\operatorname{Pr}[B \mid \bar{A}] \operatorname{Pr}[\bar{A}]}
$$

More generally:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}(A]}{\sum_{i} \operatorname{Pr}\left[B \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right]}
$$

where $A_{1} \ldots A_{n}$ partitions $\Omega=\operatorname{Pr}[B]$
Egg. 3 possible "Co" opponents, one chosen uniformly:

Example 2: Medical Testing
Sone disease affects $0.1 \% \quad(=0.001)$ of population A test has the following efficacy for a random person:

$$
\left.\begin{array}{l}
\operatorname{Pr}[\text { test positive } \mid \text { sick }]=0.99 \\
\operatorname{Pr}[\text { test positive } \mid \text { not sick }]=0.01
\end{array}\right\} \begin{aligned}
& \text { false pos/neg } \\
& \text { rates are both } \\
& 0.01
\end{aligned}
$$

Q: A random person arrives \& tests positive. What is the likelihood this person is sick?

$$
\begin{aligned}
& \operatorname{Pr}[\text { pos. } 1 \text { sick }]=0.99 \\
& \operatorname{Pr}[\text { pos. } \mid \text { not sick }]=0.01
\end{aligned} \quad \operatorname{Pr}[\text { sick }]=0.001
$$

Q: A random person arrives \& tests positive What is the likelihood this person is sick?

$$
\begin{aligned}
& \operatorname{Pr}[\text { pos. } 1 \text { sick })=0.99 \\
& \operatorname{Pr}[\text { pos. } \mid \text { not sick }]=0.01
\end{aligned} \quad \operatorname{Pr}[\text { sick }]=0.001
$$

Bayes:

$$
\begin{aligned}
& =\frac{0.99 \times 0.001}{(0.99 \times 0.001)+(0.01 \times 0.999)} \\
& \approx 0.09
\end{aligned}
$$

Not a great test?
Reave: False pos. rate is large compared to \% of sick people

Simpsovis Paradox
On-tine arrival performance of two airlines:

Which airline would you fly $\left\{\begin{array}{l}\text { into L.A. ? } \\ \text { into Chicago? } \\ \text { overall ? }\end{array}\right.$

Explanation: Airline A has a much higher percentage of its flights into L.A., which has better performance than Chicago.

Math: Pick a random flight....
on Airline A
$\operatorname{Pr}[$ ontivie $\mid L A]=0.89$
$\operatorname{Pr}[$ on time $/$ Chicago $]=0.70$
$\operatorname{Pr}[$ outive $]=\operatorname{Pr}[$ ontive $\mid L A] \operatorname{Pr}[L A]$ $+\operatorname{Pr}$ [ontriel Chic. $] \operatorname{Pr}[$ Chic. $]$

$$
=(0.89 \times \operatorname{R}[L A])+(0.70 \times \operatorname{Rr}[\text { chic }])
$$

on Airline B
$\operatorname{Pr}[$ on tine $\mid \angle A]=0.94$
$\operatorname{Pr}[$ outre \mid Chic. $]=0.76$
Pr (on tine $)=\ldots$
$=(0.94 \times \operatorname{Pr}[24])+(0.70 \times \operatorname{Pr}[$ chic $]$

Summary

- Conditional probability
- Correlation \& Judependence
- Unions \& intersections of events
- Bayes Rule *Total Probability Rule
- Inference; Simpson's Paradox

