CS70 - Spring 2024 Lecture 17 - March 14

• Conditional Robability

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Correlation & Independence

Review (cont.)

Intersections of Events : Product Rule

 $Pr[A \cap B] = Pr[B] Pr[A|B]$ $Pr[\widehat{A}_{i}] = Pr[A_{i}] \times Pr[A_{2}|A_{i}] \times Pr[A_{3}|A_{1}\cap A_{2}] \times \cdots$ $\times Pr[A_{n}|A_{1}\cap \cdots \cap A_{n-i}]$

Review (cont.)

If $A_1 \dots A_n$ partition \mathcal{R} then $Pr[B] = \sum_{i} Pr[B \cap A_i] = \sum_{i} Pr[B|A_i] Pr[A_i]$ In ponticular:

 $R(3) = P(B|A)P(A) + P(B|\overline{A})P(\overline{A})$

Pr[B|A], Pr[B|Ā], Pr[A]

Some applications of basic probability:

Hashing (& Birthday Paradox")

- · Coupon Collecting
- · Load Balancing
- We nill use:
- Concepts from last lecture (Union Bound, Product Rule,)
- Asymptotics (large-n approximations)

Q: How large can m be (as a function of n) so that the probability of collisions is small?

<u>Avalysis</u>: Balls & bins! Keys = balls, Table locations = bins

Q: In balls & bins with m balls, n bins, how large can m be so that (uith good porsability) no the balls land in same tim? For now, "with good pubability" = "with prob. 7/2" Rough calculation: Union Bound

For each (unordered) pair of balls {i,j} with i ≠ j, let C_{{ij}} denote the event that i,j land in some bin

Then $\Pr[C_{\{ij\}}] = \frac{1}{n}$ [inagine i chooses bin first] $\Pr[j chooses came bin] = \frac{1}{n}$]

Number of pairs $\{i, j\} = \binom{m}{2}$

Note that $R[Some collision occurs] = Pr \begin{bmatrix} U C_{\{i,j\}} \end{bmatrix}$

Union bound :

We want this prob. to be small $(say, \leq 1/2)$

So we want $\frac{m^2}{2n} \leq \frac{1}{2}$ *i.e.*, $m \leq \sqrt{n}$ (or $n \gg m^2$) To get smaller collision prob. E, just take $m \leq \sqrt{2En}$

Botton line: If the size of our hash table is roughly the square of the number of keys to be stored, then we're likely to have no collisions

More accurate calculation

Alternatively, using Product Rule : Let Ai = "ball i chooses different bin from balls 1, --, i-1" Then $A = A_1 \cap A_2 \cap \cdots \cap A_m$ And Pr[A] = Pr[Ai]= $R_{r}[A,] \times P_{r}[A_{2}|A,] \times P_{r}[A_{3}|A, nA_{2}] \times$ --- XR (Am Ann--n Am-) $= 1 \times (1 - \frac{1}{n}) \times (1 - \frac{2}{n}) \times \cdots \times (1 - \frac{m-1}{n})$ same as above (phew!) Since this is an exact formula for Pr[A], we Can just fix any n and compute it for larger & larger values of m until PP[A] drops to 1/2 (1-E)

Can we get a formula for mo !

 $Pr[A] \approx C^{-m/2n}$

Want Pr[A] = 1/2 $(or Pr[A] = 1 - \varepsilon)$

This means $e^{-m^2/2n} = \frac{1}{z}$

 $m^2 = (2\ln 2)n$ So a more accurate bound is $m \leq \sqrt{(2\ln 2)n}$

 $\approx 1.177 \text{ Jn}$ More generally (for collision publ. ε) $m \leq 2 \text{ Inf-}\varepsilon$. In

Q: Why is 365 in the table?

Birthday Paradox"/ Birthday Problem

Q: In a room with m people, how large does m have to be so that Pr[2 people share a birthday] 7 1/2?

A: 10

Birthday Paradox / Birthday Problem

- Q: In a room with m people, how large does m have to be so that Pr [2 people share a birthday] 7 1/2?
- A: This is exactly the collision problem for bulls & birs! # bins n = 365 # balls n = # people likely; ignores leap years)
 - From table, answer is m = 23

With m=60, Pr[2 people share a birthday] > 99%

Application 2: Coupon Collecting

There are n different baseball cards Each box of cereal contains a uniformly random card

- Q: How many boxes do we need to buy so that, with good puralbility, we have collected at least one copy of every card.
- A: Balls & bins again!
 - Here we want to know how many balls we need to throw so that every bir contains at least 1 ball

Let A = "some bin is empty" Ai = "bin i is empty" Then $A = \bigcup_{i=1}^{n} A_i$ (fun earlier) And $Pr[A_i] = (1 - \frac{1}{2})^m$ $\left(\text{using}\left(-\frac{1}{n}\right) \xrightarrow[n \to \infty]{} e^{-1}\right)$ = e^{-m/n} Union Bound : $R[A] \leq \stackrel{\sim}{Z} Pr[A:] \Rightarrow ne^{-m/n}$ So if we set m = nhn + n we get $P(A) \leq e^{-1} \leq \frac{1}{2}$ Bottom line: Need to buy about nhn boxes! E.g. for n = 100, need to buy ~ 460 boxes

Application 3: Load Balancing We have m jobs & n processors We assign jobs independently and u.a.v. to processors Q: What is the likely maximum load on a processor? Obviously the max is at least [m] But how much worse is it likely to be ? Focus on the case m=n (#jobs = # processors) Note: There will definitely be collisions since now m >> In

- Define $A_k(i) =$ bin #i has load #kNew goal: find smallest K s.t. $R[A_k(i)] \leq \frac{1}{2n}$

- Use Union Bound: $Pr[A_{x}] = Pr[\hat{U}A_{x}(i)] \le n \times \frac{1}{2n} = \frac{1}{2}$ New goal: find smallest K s.t. $R[A_k(i)] \leq \frac{1}{2n}$

New goal: find smallest K s.t. $\Pr[A_k(i)] \leq \frac{1}{2n}$

 $\Pr\left[A_{k}(i)\right] \leq \frac{1}{n^{k}} \binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k! n^{k}} \leq \frac{1}{k!}$

Finally: We want $\frac{1}{k!} \leq \frac{1}{2n}$

Taking logs: $ln(k!) \ge ln(2n)$

 $h(k!) \approx k \ln k - k$ Standard approximation (Stirling): (for large k)

hn

So we want:

 $k ln k - k \ge ln(2n)$

Solution: $K \approx \frac{mn}{mmn}$ (for large n)

Bottom line: Withpuss. 7.1/2, max load is 5

Bottom line: Withpusto. 7.1/2, max load is ~ Inm

This bound is valid for very large values of n

For realistic values of r, we need to increase it a bit to allow for lower-order terms in our approximations – a more care ful analysis leads to $k = \frac{2 \ln n}{\ln \ln n}$

 $\frac{102050}{2000} = \frac{100500}{100} = \frac{10000}{100} = \frac{1000}{1000} = \frac{10000}{1000} = \frac{1000}{1000} = \frac{1000}{$

E.g.: Send 350 pieces of mail randomly to US population Unlikely any one person gets more than ~ 13 pieces!

Random variables [= functions on prob. spaces]

