$$
\text { CS 7O - Spring } 2024
$$

Lecture 17 - March 14

Review of Previous Lecture

- Conditional Probability

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$



- Correlation \& Independence
$\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] \Rightarrow A, B$ positively correlated
$\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] \quad \Rightarrow A, B$ negatively correlated
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \quad \Rightarrow A, B$ independent
$C_{\text {equivalently: }} \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$

Review (cont.)

- Intersections of Events: Product Rule

$$
\begin{aligned}
& \operatorname{Pr}[A \cap B]= \operatorname{Pr}[B] \operatorname{Rr}[A \mid B] \\
& \operatorname{Pr}\left[\bigcap_{i=1}^{n} A_{i}\right]=\operatorname{Pr}\left[A_{1}\right] \times \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \times \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \times \ldots \\
& \times \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \ldots \cap A_{n-1}\right]
\end{aligned}
$$

- Unions of Events: Jnclusion-Exclusion

$$
\begin{aligned}
& \operatorname{Pr}[A \cup B]= \operatorname{Pr}[A]+ \\
& \operatorname{Pr}\left[\bigcup_{i=1}[B]-\operatorname{Ar}[A \cap B]=\sum_{i} \operatorname{Rr}\left[A_{i}\right]-\sum_{i<j} \operatorname{Pr}\left[A_{i} \cap A_{j}\right]\right. \\
&+\sum_{i<j<k} \operatorname{Pr}\left[A_{i} \cap A_{j} \cap A_{k}\right]-\ldots
\end{aligned}
$$

- Union Bound: $\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right] \leqslant \sum_{i=1}^{n} \operatorname{Pr}\left[\lambda_{i}\right]$

Review (cont.)

- Law of Total Probability

If $A_{1} \ldots A_{n}$ partition $\Omega$ then

$$
\operatorname{Pr}[B]=\sum_{i} \operatorname{Pr}\left[B \cap A_{i}\right]=\sum_{i} \operatorname{Pr}\left[B \mid A_{i}\right] \operatorname{Pr}\left[A_{i}\right]
$$

In particular:

$$
\operatorname{Pr}(B]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]+\operatorname{Pr}[B \mid \bar{A}] \operatorname{Pr}[\bar{A}]
$$

Bayes Rule

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B \mid A \operatorname{Pr}[A]+\operatorname{Pr}[B \mid A] \operatorname{Pr}[\bar{A}]}
$$

Today
Some applications of basic probability:

- Hashing (\& Birthday "Paradox")
- Coupon Collecting
- Load Balancing

We will use:

- Concepts from last lecture (Union Bound, Product Rule, ....)
- Asymptotics (large-n approximations)

Balls \& Bins Model
\& independently
Throw $m$ balls uniformly at random) into $n$ bins

$$
\Omega=\{1, \ldots, n\} \times\{1, \ldots, n\} \times \ldots \times\{1, \ldots, n\}
$$

$m$ tines

$$
|\Omega|=n^{m} \quad \text { [Each ball has choice of } n \text { bins] }
$$

Probability space is uniform: for every $\omega=\left(b_{1}, \ldots, b_{m}\right), \quad \operatorname{Pr}[\omega]=\frac{1}{|\Omega|}=\frac{1}{n^{m}}$.

$$
\text { Egg. } n=m=2 \quad|\Omega|=2^{2}=4
$$

Events in Balls \& Bins
E.g. $E=$ "bin 1 is empty"
(i) Calculating $\operatorname{Pr}[E]$ using counting

Since prob. space is uniform, we have

$$
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=\frac{|E|}{n^{m}}
$$

$|E|=$ \# of ways of arranging balls s.t. Bin 1 is empty $=(n-1)^{m}$
each ball now has only
$n-1$ choices
So $\operatorname{Pr}[E]=\frac{(n-1)^{m}}{n^{m}}=\left(1-\frac{1}{n}\right)^{m}$
Example: If $m=n$ then $\operatorname{Pr}[E]=\left(1-\frac{1}{n}\right)^{n} \sim \frac{1}{e} \approx 0.37$

Events in Balls \& Bins
E.g. $E=$ "bin 1 is empty"
(ii) Calculating $\operatorname{Pr}[E]$ using Product Rule

Define $A_{i}=$ "th ball doesn't go to bin 1"
$\operatorname{Pr}\left[A_{i}\right]=1-\frac{1}{n}$ for all $i_{i}$

$$
\begin{aligned}
E=\bigcap_{i=1}^{m} & A_{i} \\
\operatorname{Pr}[E]= & \operatorname{Pr}\left[A_{1}\right] \times \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \times \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \times \ldots \\
& \times \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \ldots A_{m-1}\right] \\
= & \operatorname{Pr}\left[A_{1}\right] \times \operatorname{Pr}\left[A_{2}\right] \times \ldots \times \operatorname{Pr}\left[A_{m}\right]
\end{aligned}
$$

because the $A_{i}$ are mitrally independent $D$

$$
=\left(1-\frac{1}{n}\right)^{m}
$$

- same as before!

Application 1: Hashing
Suppose we want to hash $m$ keys into a hash table of size
Use a random hash function $h$ that sends keys independently

$h: U \rightarrow T$

To ADD a key $x \in U$ : stove $x$ at (location $h(x)$ (using linked list if necessary)
TO DELETE a key $x \in U$ : remove $x$ from location $h(x)$
To perform a MEMBER: check if $x$ is stored at location Query for $x \in U$
Goal: Avoid collisions ( $\rightarrow$ linked lists)

Q: Howlauge can $m$ be (as a function of $n$ ) so that the probability of collisions is small?

Analysis: Balls \& bins!

$$
\text { Keys }=\text { balls, Table locations }=b i n s
$$

Q: In balls \& bins with $m$ balls, $n$ bins, how large can $m$ be so that (with good probability) no two balls land in same bin?
For now, "with good probability" = "with prob. $\geqslant 1 / 2$ "

Rough calculation: Union Bound
For each (unordered) pair of balls $\{i, j\}$ with $i \neq j$, let $C_{i, i j\}}$ densto the event that $i, j$ land in same bin Then $\operatorname{Pr}\left[C_{\{i, j\}}\right]=\frac{1}{n} \quad\left[\begin{array}{l}\text { imagine } i \text { chooses bin first } \\ \left.\operatorname{Pr} l_{j} \text { chooses same bin }\right\}=\frac{1}{n}\end{array}\right]$

Number of pairs $\{i, j\}=\binom{m}{2}$
Note that $\operatorname{Pr}[$ some collision occurs $]=\operatorname{Pr}\left[\bigcup_{\{i, j\}} C_{\{i, j\}}\right]$
Union bound:

$$
\operatorname{Pr}\left[\bigcup_{\{i, j\}} C_{\{i, j\}}\right] \leqslant \sum_{\{i, j\}} \operatorname{Pr}\left[C_{\{i, j\}}\right]=\binom{m}{2} \times \frac{1}{n} \leqslant \frac{m^{2}}{2 n}
$$

Union bound:

$$
\operatorname{Pr}\left[\bigcup_{\{i j\}} C_{\{i, j\}}\right] \leqslant \sum_{\{i, j\}} \operatorname{Pr}\left[C_{\{i, j\}}\right]=\binom{m}{2} \times \frac{1}{n} \leqslant \frac{m^{2}}{2 n}
$$

We want this porb. to be small (say, $\leq 1 / 2$ ) So we want $\frac{m^{2}}{2 n} \leqslant \frac{1}{2}$

$$
\text { i.e., } \quad m \leqslant \sqrt{n} \quad\left(\text { or } n \geqslant m^{2}\right)
$$

To get smaller collision pros. $\varepsilon$, just take $m \leq \sqrt{2 \varepsilon n}$
Bottom line: If the size of our hash table is roughly the square of the number of keys to be stored, then were likely to have no collisions

Move accurate calculation
Let A be the event "no collision occurs"
Then we can calculate Pr $[A]$ exactly as:

$$
\operatorname{Pr}[A]=\frac{|A|}{|\Omega|}=\frac{|A|}{n^{m}}
$$

$Q$ : What is $|A|$ ?
A: Number of ways of arranging the $m$ balls in different bins $=$ \# ways of choosing $m$ items out if $n$ without replacement

$$
=n \times(n-1) \times(n-2) \times \cdots \times(n-m+1)
$$

So

$$
\operatorname{Pr}[A]=\frac{n(n-1)(n-2) \ldots(n-m+1)}{n^{m}}=1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)
$$

Alternatively, using Product Rule:
Let $A_{i}=$ "ball $i$ chooses different bin form balls $1, \ldots, i-1$ "
Then $A=A_{1} \cap A_{2} \cap \ldots \cap A_{m}$
And $\operatorname{Pr}[A]=\operatorname{Pr}\left[\bigcap_{i=1}^{m} A_{i}\right]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[A_{1}\right] \times \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \times \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \times \\
& =1 \times\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \cdots \times\left(1-\frac{m-1}{n}\right)
\end{aligned}
$$

same as above (phew!)
Since this is an exact formula for $\operatorname{Pr}[A]$, we can just fix any $n$ and compute it for larger \& larger values of $m$ until $P[A]$ drops to $1 / 2\left(\begin{array}{c}1-8\end{array}\right)$

| $n$ | 10 | 20 | 50 | 100 | 200 | 365 | 500 | 1000 | $10^{4}$ | $10^{5}$ | $10^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{0}$ | 4 | 5 | 8 | 12 | 16 | 22 | 26 | 37 | 118 | 372 | 1177 |
|  |  |  |  |  |  |  |  |  |  |  |  |

$m_{0}=$ largest $m$ for which collision prob. remains below $1 / 2$

Can we get a formula for $m_{0}$ ?

$$
\begin{aligned}
& \operatorname{Pr}[A]=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \\
& \ln \operatorname{Pr}[A]=\ln \left(1-\frac{1}{n}\right)+\ln \left(1-\frac{2}{n}\right)+\cdots+\ln \left(1-\frac{m-1}{n}\right) \\
& \approx\left(-\frac{1}{n}\right)+\left(-\frac{2}{n}\right)+\cdots+\left(-\frac{m-1}{n}\right) \\
&=-\frac{1}{n} \sum_{i=1}^{m-1} i(1-x) \\
&=-\frac{1}{n} \cdot \frac{m(m-1)}{2} \\
& \text { for } x \text { small } \\
& \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

Hence $\operatorname{Pr}[A] \approx e^{-m^{2} / 2 n}$

$$
\operatorname{Pr}[A] \approx e^{-m^{2} / 2 n}
$$

Want $\operatorname{Pr}[A]=1 / 2 \quad(\operatorname{or} \operatorname{Pr}[A]=1-\varepsilon)$
This means

$$
\begin{aligned}
& e^{-m^{2} / 2 n}=\frac{1}{2} \\
& m^{2}=(2 \ln 2) n
\end{aligned}
$$

So a move accurate bound is $m \leq \sqrt{(2 \ln 2) n}$

$$
\approx 1.177 \sqrt{n}
$$

More generally (for collision pros. $\varepsilon$ ) $m \leqslant \sqrt{2 \ln \left(\frac{1}{1-\varepsilon}\right)} \cdot \sqrt{n}$

| $n$ | 10 | 20 | 50 | 100 | 200 | 365 | 500 | 1000 | $10^{4}$ | $10^{5}$ | $10^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{0}$ | 4 | 5 | 8 | 12 | 16 | 22 | 26 | 37 | 118 | 372 | 1177 |
| $1.177 \sqrt{n}$ | 3.7 | 5.3 | 8.3 | 11.8 | 16.6 | 22.5 | 26.3 | 37.3 | 118 | 372 | 1177 |

$m_{0}=$ Largest $m$ for which collision prob. remains below $1 / 2$
$1.177 \sqrt{n}=$ our approximation of $m_{0}$
Q: Why is 365 in the table?

Birthday "Paradox" / Birthday Problem
Q: In a room with $m$ people, how large does $m$ have to be so that $\operatorname{Pr}[2$ people share a birthday $] \geqslant \frac{1}{2}$ ?

A: 10
20
50
100
300

Birthday "Paradox" / Birthday Problem
$Q:$ In a room with $m$ people, how large does $m$ have to be so that $\operatorname{Pr}[2$ people shave a birthday $] \geqslant \frac{1}{2}$ ?
A: This is exactly the collision problem for bulls \& bins! \#bins $n=365$
\# balls $m=$ \#people
(assumes all birthdays equally

From table, answer is $m=23$
With $m=60, \operatorname{Pr}[2$ people shave a birthday $]>99 \%$

Application 2 : Coupon Collecting
There are $n$ different baseball cards Each box of cereal contains a uniformly randouncard
Q: How many boxes do we need to buy so that, with good pubability, we have collected at least one copy of every card.
A: Balls \& bins again!
Here we want to know how many balls we need to throw so that every bin contains at least 1 ball

Let $A=$ "some bin is empty"
$A_{i}=$ "bin $i$ is empty"
Then $A=\bigcup_{i=1}^{n} A_{i}$
And $\operatorname{Pr}\left[A_{i}\right]=\left(1-\frac{1}{n}\right)^{m}$
(form earlier)

$$
\left.\approx e^{-m / n} \quad \text { (using }\left(1-\frac{1}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{ } e^{-1}\right)
$$

Union Bound:

$$
\operatorname{Pr}[A] \leqslant \sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right] \approx n e^{-m / n}
$$

So if we set $m=n \ln n+n$ we get

$$
\operatorname{Pr}[A] \leqslant e^{-1}<1 / 2
$$

Bottom line: Need to buy about nlnn boxes ! E.g. for $n=100$, need to buy $\sim 460$ boxes

Application 3: Load Balancing
We have $m$ jobs \& $\&$ processors We assign jobs independently and u.a.v. to processors
Q: What is the likely maximum load on a processor?
Obviously the max is at least $\left\lceil\frac{m}{n}\right\rceil$
But how much worse is it likely to be?
Focus on the case $m=n$ (\#jolos $=\#$ processors)
Note: There will definitely be collisions since now $m \gg \sqrt{n}$

Strategy:

- Define $A_{k}=$ "some processor has Wad $\geqslant k$ " Goal: find smallest $k$ s.h $\operatorname{Pr}\left[A_{k}\right] \leq 1 / 2$ or $\varepsilon$
-Define $A_{k}(i)="$ bin \#i has load $\geqslant k "$ New goal: find smallest $k$ s.t. $\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \frac{1}{2 n}$
- Use Union Bound:

$$
\operatorname{Pr}\left[A_{k}\right]=\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{k}(i)\right] \leqslant n \times \frac{1}{2 n}=\frac{1}{2}
$$

New goal: find smallest $k$ s.t. $\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \frac{1}{2 n}$
Focus on bin $\# i$
For any subset $S \leq\{1, \ldots, n\}$ of $k$ balls, define $B_{S}=$ "all balls in $S$ land in bin \# $i$ "
Claim: $A_{k}(i)=\bigcup_{S} B_{s}$
Union Bound (again!)

$$
\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \sum_{s} \operatorname{Pr}\left[B_{s}\right]
$$

And $\operatorname{Pr}\left[B_{s}\right]=\frac{1}{n^{k}} ; \quad \#$ of $S=\binom{n}{k}$
So: $\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \frac{1}{n^{k}}\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!n^{k}} \leqslant \frac{1}{k!}$

New goal: find smallest $k$ s.t. $\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \frac{1}{2 n}$

$$
\operatorname{Pr}\left[A_{k}(i)\right] \leqslant \frac{1}{n^{k}}\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!n^{k}} \leqslant \frac{1}{k!}
$$

Finally: We want

$$
\frac{1}{k!} \leq \frac{1}{2 n}
$$

Taking logs: $\ln (k!) \geqslant \ln (2 n)$
Standard approximation (Stirling): $\ln (k!) \approx k \ln k-k$ (for large $k$ )
So we want:

$$
k \ln k-k \geqslant \ln (2 n)
$$

Solution: $K \approx \frac{\ln n}{\ln \ln n}$ (for large $n$ )
Bottom line: Withprob. $\geqslant 1 / 2$, max. load is $\leqslant \frac{\ln n}{\ln n n}$

Bottom line: Withprots. $\geqslant 1 / 2, \max$.load is $\lesssim \frac{\ln n}{\ln \ln n}$
This bound is valid for very large values of $n$ For realistic values of $n$, we need to increase it a bit to allow for lower-order terms in our approximations - a more careful analysis leads to $\quad k \geqslant \frac{2 \ln n}{\ln \ln n}$

| $n$ | 10 | 20 | 50 | 100 | 500 | 1000 | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ | $10^{15}$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\frac{2 \ln n}{\ln \ln n}$ | 55 | 55 | 5.7 | 6.0 | 6.8 | 7.2 | 8.2 | 9.4 | 10.6 | 11.6 | 12.6 | 20 |

Egg.: Send 350 pieces of mail randomly to US population Unlikely any one person gets move than $\sim 13$ pieces!

Next lecture

- Random variables $[=$ functions on prob. spaces]
- Expectation $[=$ mean/average $]$

