CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
- 4. by Contradiction (Prove *P* by assuming ¬*P* and reaching a contradiction.)
- 5. by Cases (enumerate an exhaustive set of cases)

Another direct proof.

Let D_3 be the 3 digit natural numbers. Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n
```

```
Examples:
```

```
n = 121 \quad \text{Alt Sum: } 1-2+1=0. \text{ Divis. by } 11. \text{ As is } 121.
n = 605 \quad \text{Alt Sum: } 6-0+5=11 \text{ Divis. by } 11. \text{ As is } 605=11(55)
Proof: For n \in D_3, n = 100a+10b+c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a+11b to both sides.

100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+b is integer. \implies 11|n.

\square Direct proof of P \implies Q: Assumed P: 11|a-b+c. Proved Q:

11|n.
```

Quick Background and Notation.

```
Integers closed under addition.

a, b \in Z \implies a+b \in Z

a|b \text{ means "a divides b".}

2|4? \text{ Yes!}

7|23? \text{ No!}

4|2? \text{ No!}

Formally: a|b \iff \exists q \in Z \text{ where } b = aq.

3|15 \text{ since for } q = 5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and itself.
```

The Converse

Thm: $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ Example: n = 264. 11|n? 11|2 - 6 + 4?

Direct Proof (Forward Reasoning).

```
Theorem: For any a, b, c \in Z, if a|b and a|c then a|b-c.

Proof: Assume a|b and a|c

b = aq and c = aq' where q, q' \in Z

b-c = aq - aq' = a(q-q') Done?

(b-c) = a(q-q') and (q-q') is an integer so

a|(b-c)

Works for \forall a, b, c?

Argument applies to every a, b, c \in Z.

Direct Proof Form:

Goal: P \Longrightarrow Q

Assume P.

...

Therefore Q.

Another Direct Proof.
```

```
Theorem: \forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \implies

99a + 11b + (a - b + c) = 11k \implies

a - b + c = 11k - 99a - 11b \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b + c = 11(k - 1) \implies

a - b + c = 11(
```

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

"Proof":

Let n = abc, where a, b, and c are the hundreds, tens, and units digits of n, respectively.

If 11 divides n, then there exists an integer k such that: n = 11k

Now, let's calculate the alternating sum of digits: Alternating sum = a - b + c

Since n = 11k, we have: a - b + c = 11k

This shows that the alternating sum of digits is equal to 11 times some integer k, and therefore, it is divisible by 11.

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: **Theorem:** P. $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies P_1 \cdots \implies \neg R$ $\neg P \implies False$ Contrapositive: True $\implies P$. Theorem P is proven.

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d|n so we have n = qd = q(2k) = 2(kq)n is even. $\neg P$

Contradiction

Theorem: $\sqrt{2}$ is irrational. Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$. Reduced form: *a* and *b* have no common factors.

 $\sqrt{2}b = a$

 $2b^2 = a^2 = 4k^2$

 a^2 is even $\implies a$ is even. a = 2k for some integer k

$b^2 = 2k^2$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction. Another Contrapostion...

Lemma: For every *n* in *N*, *n*² is even \implies *n* is even. ($P \implies Q$) *n*² is even, $n^2 = 2k$, ... $\sqrt{2k}$ even? Proof by contraposition: ($P \implies Q$) $\equiv (\neg Q \implies \neg P)$ $P = 'n^2$ is even' $\neg P = 'n^2$ is odd' Q = 'n is even' $\neg Q = 'n$ is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number.. ... and *n*² is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Proof by contradiction: example

Theorem: There are infinitely many primes. Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

 $q = p_1 \times p_2 \times \cdots p_k + 1.$

q cannot be one of the primes as it is larger than any *p_i*. *q* has prime divisor *p* ("*p* > 1" = R) which is one of *p_i*. *p* divides both *x* = *p*₁ · *p*₂ … *p_k* and *q*, and divides *q* − *x*,
⇒ *p*|*q*−*x* ⇒ *p* ≤ *q*−*x* = 1.
so *p* ≤ 1. (Contradicts *R*.)
The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between.

Be careful.

```
Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and

the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

P \implies Q does not mean Q \implies P.
```

Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If *x* is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both *a* and *b* are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

 $a^5 - ab^4 + b^5 = 0$

multiply by b⁵,

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows. $\hfill \Box$

Summary

```
Direct Proof:

To Prove: P \implies Q. Assume P. reason forward, Prove Q.

By Contraposition:

To Prove: P \implies Q Assume \neg Q. Prove \neg P.

By Contradiction:

To Prove: P Assume \neg P. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either \sqrt{2} and \sqrt{2} worked.

or \sqrt{2} and \sqrt{2}^{\sqrt{2}} worked.
```

```
Careful when proving!
Don't assume the theorem. Divide by zero. Watch converse. ...
```

Proof by cases.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^2 = 2$.

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!