CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$ by proving $\neg Q \Longrightarrow \neg P$)
- 4. by Contradiction (Prove P by assuming $\neg P$ and reaching a contradiction.)
- 5. by Cases (enumerate an exhaustive set of cases)

Quick Background and Notation.

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid b - c$.

Proof: Assume
$$a|b$$
 and $a|c$

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

. . .

Therefore Q.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For
$$n \in D_3$$
, $n = 100a + 10b + c$, for some a, b, c .

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

 \square Direct proof of $P \Longrightarrow Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? $\forall n \in D_3$, (11|n) \Longrightarrow (11|alt. sum of digits of n) Example: n = 264. 11|n? 11|2 - 6 + 4?

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties except when multiplying by 0.

We have.

Theorem: $\forall n \in D_3$, (11|alt. sum of digits of n) \iff (11|n)

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

"Proof":

Let n = abc, where a, b, and c are the hundreds, tens, and units digits of n, respectively.

If 11 divides n, then there exists an integer k such that: n = 11k

Now, let's calculate the alternating sum of digits: Alternating sum = a - b + c

Since n = 11k, we have: a - b + c = 11k

This shows that the alternating sum of digits is equal to 11 times some integer k, and therefore, it is divisible by 11.

Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

 n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

 $n^2 = 2I + 1$ where *I* is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow \mathsf{False}$$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- ▶ q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first *k* primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- ► The chain of reasoning started with a false statement.

Consider example..

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- There is a prime in between 13 and q = 30031 that divides q.
- Proof assumed no primes in between.

Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. reason forward, Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...