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By Example (or Counterexample).
Direct. (Prove P —= Q.)
by Contraposition (Prove P — Q by proving -Q — —P)

by Contradiction (Prove P by assuming —P and reaching a
contradiction.)

by Cases (enumerate an exhaustive set of cases)
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Quick Background and Notation.

Integers closed under addition.
abeZ = a+be”Z
alb means “a divides b”.
2/4? Yes!
7|23? No!
4/2? No!
Formally: alb < 3g € Z where b= aq.
3|15 since for g =5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and
itself.
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Direct Proof (Forward Reasoning).

Theorem: For any a,b,c € Z, if a|b and a|c then alb—c.

Proof: Assume alb and a|c
b=agand c=aq where q,q €¢Z

b—c=ag—aq =a(q—q’) Done?
(b—c)=a(q—qd) and (q—q) is an integer so
al(b-c)

Works for Va, b, c?
Argument applies to every a,b,c € Z.

Direct Proof Form:
Goal: P = Q
Assume P.

Therefore Q.
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11|n.



The Converse

Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n



The Converse

Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n

Is converse a theorem?
Vne Ds,(11|n) = (11]alt. sum of digits of n)



The Converse

Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n

Is converse a theorem?
Vne Ds,(11|n) = (11]alt. sum of digits of n)

Example: n=264.



The Converse

Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n

Is converse a theorem?
Vne Ds,(11|n) = (11]alt. sum of digits of n)

Example: n=264. 11|n?



The Converse

Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n

Is converse a theorem?
Vne Ds,(11|n) = (11]alt. sum of digits of n)

Example: n=264. 11|n? 11|2—-6+47?



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof:



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k —
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a-11b —
a-b+c=11(k—9a-b)



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a-11b —
a-b+c=11(k—9a-b) =
a-b+c=11¢



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ

That is 11]alternating sum of digits.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ

That is 11]alternating sum of digits.

Note: similar proof to other. In this case every —> is «—



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ

That is 11]alternating sum of digits.
Note: similar proof to other. In this case every —> is «—

Often works with arithmetic properties except when multiplying by 0.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ

That is 11]alternating sum of digits.

Note: similar proof to other. In this case every —> is «—

Often works with arithmetic properties except when multiplying by 0.
We have.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
a-b+c=11(k—9a-b) =
a-b+c=11¢/where{=(k—9a—-b)eZ

That is 11]alternating sum of digits. O
Note: similar proof to other. In this case every —> is «—

Often works with arithmetic properties except when multiplying by 0.
We have.

Theorem: Vn € D3, (11|alt. sum of digits of n) <= (11|n)



Another Proof?

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)



Another Proof?

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)

“Proof”:



Another Proof?

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)

“Proof”:

Let n = abc, where a, b, and ¢ are the hundreds, tens, and units digits
of n, respectively.

If 11 divides n, then there exists an integer k such that: n =11k

Now, let’s calculate the alternating sum of digits:
Alternatingsum=a-b+c

Sincen=11k, we have: a-b+c=11k

This shows that the alternating sum of digits is equal to 11 times
some integer k, and therefore, it is divisible by 11.
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Thm: For ne Z* and d|n. If nis odd then d is odd.
n=2k+1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P —= Q.
Proof: Assume —Q: d is even. d = 2k.
d|n so we have
n=qd = q(2k) = 2(kq)
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Product of first k primes..

Did we prove?
» “The product of the first k primes plus 1 is prime.”
» No.
» The chain of reasoning started with a false statement.

Consider example..
> 2x3x5x7x11x13+1=30031=259 x 509
» There is a prime in between 13 and q = 30031 that divides
q.
» Proof assumed no primes in between.
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Proof: Firstalemma...
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The fourth case is the only one possible, so the lemma follows.
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Proof by cases.

Theorem: There exist irrational x and y such that x¥ is rational.
Letx =y =+2.
V2 . .
Case 1: x¥ = /2" is rational. Done!
Case2: \@\/E is irrational.

» New values: x = \@\/E, y=+2.
>

X = (ff) VRt p

Thus, in this case, we have irrational x and y with a rational x” (i.e.,
2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
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Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and
the other by 4 to get 4 = 3. By commutativity theorem holds. O]

Don’t assume what you want to prove!

Theorem: 1 =2
Proof: For x = y, we have

(X2 —xy)=x2—y?
X(x=y)=(x+y)(x—y)

X=(x+y)
X =2X
1=2 O

Dividing by zero is no good.
Also: Multiplying inequalities by a negative.

P — Qdoes not mean Q — P.
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Summary

Direct Proof:
To Prove: P = Q. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: P —> Q Assume —Q. Prove —P.

By Contradiction:
To Prove: P Assume —P. Prove False .

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v/2 and /2 worked.

or v2 and v2"2 worked.
Careful when proving!

Don’t assume the theorem. Divide by zero. Watch converse. ...



