
CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example (or Counterexample).
2. Direct. (Prove P =⇒ Q. )
3. by Contraposition (Prove P =⇒ Q by proving ¬Q =⇒ ¬P)
4. by Contradiction (Prove P by assuming ¬P and reaching a

contradiction.)
5. by Cases (enumerate an exhaustive set of cases)
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Quick Background and Notation.

Integers closed under addition.

a,b ∈ Z =⇒ a+b ∈ Z

a|b means “a divides b”.

2|4? Yes!

7|23? No!

4|2? No!

Formally: a|b ⇐⇒ ∃q ∈ Z where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and
itself.
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Direct Proof (Forward Reasoning).

Theorem: For any a,b,c ∈ Z , if a|b and a|c then a|b−c.

Proof: Assume a|b and a|c

b = aq and c = aq′ where q,q′ ∈ Z

b−c = aq−aq′ = a(q−q′) Done?

(b−c) = a(q−q′) and (q−q′) is an integer so

a|(b−c)

Works for ∀a,b,c?
Argument applies to every a,b,c ∈ Z .

Direct Proof Form:
Goal: P =⇒ Q

Assume P.
. . .
Therefore Q.
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Another direct proof.
Let D3 be the 3 digit natural numbers.

Theorem: For n ∈ D3, if the alternating sum of digits of n is divisible
by 11, than 11|n.

∀n ∈ D3,(11|alt. sum of digits of n) =⇒ 11|n
Examples:
n = 121 Alt Sum: 1−2+1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6−0+5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For n ∈ D3, n = 100a+10b+c, for some a,b,c.

Assume: Alt. sum: a−b+c = 11k for some integer k .

Add 99a+11b to both sides.

100a+10b+c = 11k +99a+11b = 11(k +9a+b)

Left hand side is n, k +9a+b is integer. =⇒ 11|n.

Direct proof of P =⇒ Q: Assumed P: 11|a−b+c . Proved Q:
11|n.
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Another Direct Proof.

Theorem: ∀n ∈ D3,(11|n) =⇒ (11|alt. sum of digits of n)

Proof: Assume 11|n.

n = 100a+10b+c = 11k =⇒
99a+11b+(a−b+c) = 11k =⇒

a−b+c = 11k −99a−11b =⇒
a−b+c = 11(k −9a−b) =⇒

a−b+c = 11ℓ where ℓ= (k −9a−b) ∈ Z

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every =⇒ is ⇐⇒
Often works with arithmetic properties except when multiplying by 0.

We have.

Theorem: ∀n ∈ D3,(11|alt. sum of digits of n) ⇐⇒ (11|n)
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Another Proof?
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“Proof”:
Let n = abc, where a, b, and c are the hundreds, tens, and units digits
of n, respectively.

If 11 divides n, then there exists an integer k such that: n = 11k

Now, let’s calculate the alternating sum of digits:
Alternating sum = a - b + c

Since n = 11k, we have: a - b + c = 11k

This shows that the alternating sum of digits is equal to 11 times
some integer k, and therefore, it is divisible by 11.
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Proof by Contraposition

Thm: For n ∈ Z+ and d |n. If n is odd then d is odd.

n = 2k +1 what do we know about d?

What to do?

Goal: Prove P =⇒ Q.

Assume ¬Q
...and prove ¬P.

Conclusion: ¬Q =⇒ ¬P equivalent to P =⇒ Q.

Proof: Assume ¬Q: d is even. d = 2k .

d |n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P
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Another Contrapostion...

Lemma: For every n in N, n2 is even =⇒ n is even. (P =⇒ Q)

n2 is even, n2 = 2k , ...
√

2k even?

Proof by contraposition: (P =⇒ Q)≡ (¬Q =⇒ ¬P)

P = ’n2 is even.’ ........... ¬P = ’n2 is odd’

Q = ’n is even’ ........... ¬Q = ’n is odd’

Prove ¬Q =⇒ ¬P: n is odd =⇒ n2 is odd.

n = 2k +1

n2 = 4k2 +4k +1 = 2(2k2 +2k)+1.

n2 = 2l +1 where l is a natural number..

... and n2 is odd!

¬Q =⇒ ¬P so P =⇒ Q and ...
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Proof by Contradiction

Theorem:
√

2 is irrational.

Must show: For every a,b ∈ Z , (a
b )

2 ̸= 2.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

¬P =⇒ P1 · · · =⇒ R

¬P =⇒ P1 · · · =⇒ ¬R

¬P =⇒ False

Contrapositive: True =⇒ P. Theorem P is proven.
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Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:
▶ Assume finitely many primes: p1, . . . ,pk .
▶ Consider

q = p1 ×p2 ×·· ·pk +1.

▶ q cannot be one of the primes as it is larger than any pi .
▶ q has prime divisor p (”p > 1” = R ) which is one of pi .
▶ p divides both x = p1 ·p2 · · ·pk and q, and divides q−x ,
▶ =⇒ p|q−x =⇒ p ≤ q−x = 1.

▶ so p ≤ 1. (Contradicts R.)
The original assumption that “the theorem is false” is false,
thus the theorem is proven.
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Product of first k primes..

Did we prove?
▶ “The product of the first k primes plus 1 is prime.”

▶ No.
▶ The chain of reasoning started with a false statement.

Consider example..
▶ 2×3×5×7×11×13+1 = 30031 = 59×509
▶ There is a prime in between 13 and q = 30031 that divides

q.
▶ Proof assumed no primes in between.
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Proof by cases. (“divide-and-conquer” strategy)
Theorem: x5 −x +1 = 0 has no solution in the rationals.

Proof: First a lemma...
Lemma: If x is a solution to x5 −x +1 = 0 and x = a/b for a,b ∈ Z ,
then both a and b are even.

Reduced form a
b : a and b can’t both be even! + Lemma

=⇒ no rational solution.

Proof of lemma: Assume a solution of the form a/b.(a
b

)5
−a/b+1 = 0

multiply by b5,
a5 −ab4 +b5 = 0

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.
Case 2: a even, b odd: even - even +odd = even. Not possible.
Case 3: a odd, b even: odd - even +even = even. Not possible.
Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
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Proof by cases.

Theorem: There exist irrational x and y such that xy is rational.

Let x = y =
√

2.

Case 1: xy =
√

2
√

2
is rational. Done!

Case2:
√

2
√

2
is irrational.

▶ New values: x =
√

2
√

2
, y =

√
2.

▶

xy =
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2
√

2
)√

2

=
√

2
√

2∗
√

2
=

√
2

2
= 2.

Thus, in this case, we have irrational x and y with a rational xy (i.e.,
2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
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Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and
the other by 4 to get 4 = 3. By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: 1 = 2
Proof: For x = y , we have

(x2 −xy) = x2 −y2

x(x −y) = (x +y)(x −y)
x = (x +y)
x = 2x

1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

P =⇒ Q does not mean Q =⇒ P.
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Summary

Direct Proof:
To Prove: P =⇒ Q. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: P =⇒ Q Assume ¬Q. Prove ¬P.

By Contradiction:
To Prove: P Assume ¬P. Prove False .

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either

√
2 and

√
2 worked.

or
√

2 and
√

2
√

2
worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...
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