Today: Proofs!!!

1. By Example (or Counterexample).

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \implies Q$.)

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
- 4. by Contradiction (Prove *P* by assuming ¬*P* and reaching a contradiction.)

- 1. By Example (or Counterexample).
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
- 4. by Contradiction (Prove *P* by assuming ¬*P* and reaching a contradiction.)
- 5. by Cases (enumerate an exhaustive set of cases)

Integers closed under addition.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq. 3|15

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5,

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c.

Proof: Assume a|b and a|c

b = aq

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c.

Proof: Assume a|b and a|c

b = aq and c = aq'

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | b - c.

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | b - c.

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq'

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c.

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q')

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | b - c.

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c = aq - aq' = a(q - q') Done?

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | b - c.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q')

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a. b. c$?

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \implies Q$

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid b - c$.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so a|(b - c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \implies Q$ Assume P.

Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \implies Q$ Assume P.

• • •

Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|b-c. **Proof:** Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

```
Goal: P \implies Q
Assume P.
```

Therefore Q.

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11| \text{alt. sum of digits of } n) \implies 11|n$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ Examples: n = 121

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

 \Box Direct proof of $P \implies Q$: Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

 \Box Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) $\implies 11|n$ Is converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Example: n = 264. Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Example: n = 264. 11|n? Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Example: n = 264. 11|n? 11|2 - 6 + 4?

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:**

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

n = 100a + 10b + c = 11k

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b)$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties except when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties except when multiplying by 0. We have.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties except when multiplying by 0. We have.

Theorem: $\forall n \in D_3$, (11|alt. sum of digits of n) \iff (11|n)

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

"Proof":

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

"Proof":

Let n = abc, where a, b, and c are the hundreds, tens, and units digits of n, respectively.

If 11 divides n, then there exists an integer k such that: n = 11k

Now, let's calculate the alternating sum of digits: Alternating sum = a - b + c

Since n = 11k, we have: a - b + c = 11k

This shows that the alternating sum of digits is equal to 11 times some integer k, and therefore, it is divisible by 11.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do?

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k.

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have n = qd

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have n = qd = q(2k)

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have n = qd = q(2k) = 2(kq)

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have n = qd = q(2k) = 2(kq)n is even.

Thm: For $n \in Z^+$ and $d \mid n$. If *n* is odd then *d* is odd. n = 2k + 1 what do we know about d? What to do? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d n so we have n = qd = q(2k) = 2(kq)*n* is even. $\neg P$

Another Contrapostion...

Another Contrapostion...

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$) n^2 is even, $n^2 = 2k$, ...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ $P = n^2$ is even.'

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd!

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd!

 $\neg Q \implies \neg P$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd! $\neg Q \Longrightarrow \neg P$ so $P \Longrightarrow Q$ and ...

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$,

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

$$\neg P \implies P_1 \cdots \implies R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
$$\neg P$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
$$\neg P \Longrightarrow P_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
$$\neg P \Longrightarrow P_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$ $\neg P \Longrightarrow P_1 \cdots \Longrightarrow \neg R$ $\neg P \Longrightarrow \mathsf{False}$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$
- $\neg P \implies P_1 \cdots \implies \neg R$

 $\neg P \implies \mathsf{False}$

Contrapositive: True \implies *P*.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies P_1 \cdots \implies \neg R$

 $\neg P \implies \mathsf{False}$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies P_1 \cdots \implies \neg R$

 $\neg P \implies \mathsf{False}$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

 $b^2 = 2k^2$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes. **Proof:**

Theorem: There are infinitely many primes. Proof:

► Assume finitely many primes: *p*₁,...,*p*_k.

Theorem: There are infinitely many primes. **Proof:**

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

Theorem: There are infinitely many primes.

Proof:

• Assume finitely many primes: p_1, \ldots, p_k .

Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

• q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\blacktriangleright \implies p|q-x$$

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x$$

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x=1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

so *p* ≤ 1.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

• so $p \le 1$. (Contradicts *R*.)

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x=1.$$

▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider

$$q=p_1\times p_2\times\cdots p_k+1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x=1.$$

▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Did we prove?

"The product of the first k primes plus 1 is prime."

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

 $\blacktriangleright \ 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime in between 13 and q = 30031 that divides q.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime in between 13 and q = 30031 that divides q.
- Proof assumed no primes in between.

Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma ...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - a/b + 1 = 0$$

multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^y =$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2$$

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, in this case, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Theorem: 3 = 4

Theorem: 3 = 4

Proof: Assume 3 = 4.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

```
Theorem: 1 = 2
Proof:
```

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x^2 - xy) = x^2 - y^2$$

 $x(x - y) = (x + y)(x - y)$

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x2-xy) = x2 - y2$$

x(x-y) = (x+y)(x-y)
x = (x+y)

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x2-xy) = x2 - y2$$

x(x-y) = (x+y)(x-y)
x = (x+y)
x = 2x

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x2 - xy) = x2 - y2$$
$$x(x - y) = (x + y)(x - y)$$
$$x = (x + y)$$
$$x = 2x$$
$$1 = 2$$

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

$$(x2-xy) = x2 - y2$$

x(x-y) = (x+y)(x-y)
x = (x+y)
x = 2x
1 = 2

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2**Proof:** For x = y, we have

$$(x2 - xy) = x2 - y2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2**Proof:** For x = y, we have

$$(x2 - xy) = x2 - y2$$
$$x(x - y) = (x + y)(x - y)$$
$$x = (x + y)$$
$$x = 2x$$
$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2**Proof:** For x = y, we have

$$(x2 - xy) = x2 - y2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

$$P \Longrightarrow Q$$
 does not mean $Q \Longrightarrow P$.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. reason forward, Prove *Q*.

Direct Proof: To Prove: $P \implies Q$. Assume P. reason forward, Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. reason forward, Prove *Q*. By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False.

Direct Proof:

To Prove: $P \implies Q$. Assume P. reason forward, Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \implies Q$. Assume *P*. reason forward, Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...