Lecture Outline

Strengthening Induction Hypothesis.

Strong Induction

Well ordered principle.

Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n}

divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Ind Hyp: n = k. $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

$$= 12a+3+1$$

$$= 3(4a+1)+1$$

 $a \text{ integer} \implies (4a+1) \text{ is an integer.}$

Strengthening Induction Hypothesis.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k - 1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step To prove that sum of first k+1 odds is $(k+1)^2$.

1. The
$$(k+1)$$
st odd number is $2(k+1)-1 = 2k+1$.

2. Sum of the first
$$k+1$$
 odds is

$$a^2 + 2k + 1 = k^2 + 2k + 1$$

3.
$$k^2 + 2k + 1 = (k+1)^2$$

... $P(k+1)!$

Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

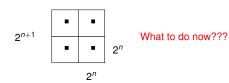
П

Base case: A single tile works fine.

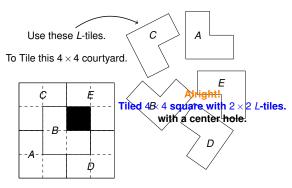
The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.



Tiling Cory Hall Courtyard.



Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole) for every n!

Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

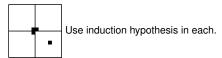
Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere**."

Consider $2^{n+1} \times 2^{n+1}$ square.



Use L-tile and ... we are done.

Strong Induction: Example

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes."

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \Longrightarrow P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b = (factorization of a)(factorization of b)" <math>n+1$ can be written as the product of the prime factors!

Strong Induction and Recursion.

Thm: For every natural number $n \ge 12$, n = 4x + 5y.

Instead of proof, let's write some code!

```
def find-x-y(n):
   if (n==12) return (3,0)
   elif (n==13): return(2,1)
   elif (n==14): return(1,2)
   elif (n==15): return(0,3)
   else:
     (x,y) = find-x-y(n-4)
     return(x+1,y)
```

Base cases: P(12), P(13), P(14), P(15). Holds for all.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$.

Slight differences: showed for all $n \ge 16$ that $\wedge_{i=1}^{n-1} P(i) \implies P(n)$.

Strong Induction is a form of (regular) Induction.

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \implies Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \implies Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k+1)))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies P(k+1))

Strong Induction Principle: If P(0) and (\forall k \in N)((P(0) \land \dots \land P(k)) \implies P(k+1)),

then (\forall k \in N)(P(k)).
```

Horses of the same color...

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 11,22,3,...,k,k+1

Second k have same color by P(k). 11,22,3,...,k,k+1

A horse in the middle in common! 11,22,3,...,k,k+1 All k must have the same colormort!,2,3,...,k,k+1

How about $P(1) \Rightarrow P(2)$?

Fix base case.

...Still doesn't work!!

(There are two horses is \neq For all two horses!!!)

Of course it doesn't work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!

Well Ordering Principle and Induction.

```
If (\forall n)P(n) is not true, then (\exists n)\neg P(n).
```

Consider smallest m, with $\neg P(m)$,

 $P(m-1) \Longrightarrow P(m)$ must be false (assuming P(0) holds.)

This is a proof of the induction principle!

l.e.

$$\neg(\forall nP(n)) \implies \big((\exists n)\neg(P(n-1) \implies P(n)\big).$$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Summary: principle of induction.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \implies P(n+1)$.

Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \leq kP(n)) \Longrightarrow P(k+1))) \Longrightarrow (\forall n \in N)(P(n))$$

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first n odds is n^2 .

Hole anywhere.

Not same as strong induction.

Induction \equiv Recursion.