Lecture Outline

Strengthening Induction Hypothesis.

Lecture Outline

Strengthening Induction Hypothesis. Strong Induction

Lecture Outline

Strengthening Induction Hypothesis.
Strong Induction
Well ordered principle.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

kth odd number is 2k - 1 for k > 1.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k - 1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k - 1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k - 1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step To prove that sum of first k + 1 odds is $(k + 1)^2$.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k-1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step To prove that sum of first k + 1 odds is $(k + 1)^2$.

1. The (k+1)st odd number is 2(k+1)-1 = 2k+1.

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

*k*th odd number is 2k - 1 for $k \ge 1$.

Base Case 1 (1st odd number) is 1².

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step To prove that sum of first k+1 odds is $(k+1)^2$.

- 1. The (k+1)st odd number is 2(k+1)-1 = 2k+1.
- 2. Sum of the first k + 1 odds is $a^2 + 2k + 1 = k^2 + 2k + 1$

Theorem: The sum of the first *n* odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2 .

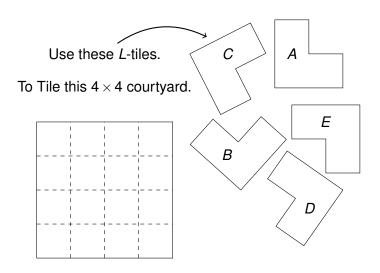
*k*th odd number is 2k-1 for $k \ge 1$.

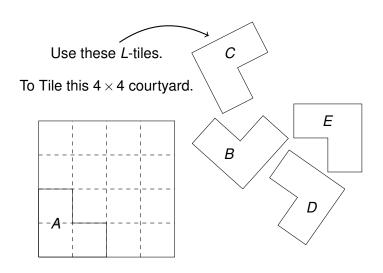
Base Case 1 (1st odd number) is 1².

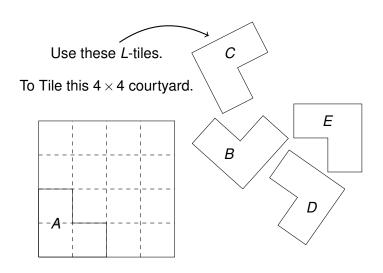
Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

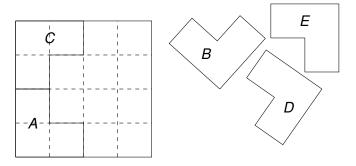
Induction Step To prove that sum of first k+1 odds is $(k+1)^2$.

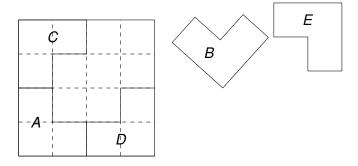
- 1. The (k+1)st odd number is 2(k+1)-1 = 2k+1.
- 2. Sum of the first k + 1 odds is $a^2 + 2k + 1 = k^2 + 2k + 1$
- 3. $k^2 + 2k + 1 = (k+1)^2$... P(k+1)!

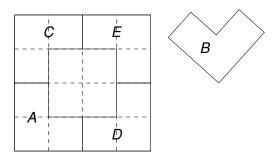


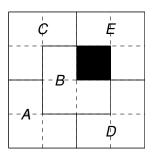




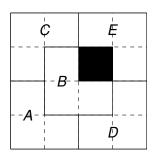




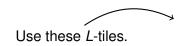




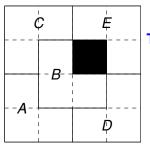
To Tile this 4×4 courtyard.



Alright!

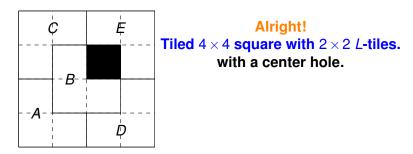


To Tile this 4×4 courtyard.



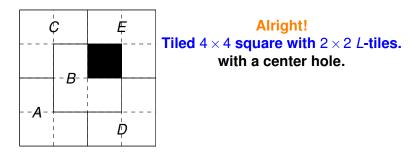
Alright! Tiled 4×4 square with 2×2 *L*-tiles. with a center hole.

To Tile this 4×4 courtyard.



Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole)

To Tile this 4×4 courtyard.



Can we tile any $2^n \times 2^n$ with *L*-tiles (with a hole) for every n!

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0.

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)}$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)} = 2^{2k} * 2^2$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)} = 2^{2k} * 2^2$$
$$= 4 * 2^{2k}$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)}$$
 = $2^{2k} * 2^2$
 = $4 * 2^{2k}$
 = $4 * (3a+1)$
 = $12a+3+1$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

$$= 12a+3+1$$

$$= 3(4a+1)+1$$

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Ind Hyp: n = k. $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

$$= 12a+3+1$$

$$= 3(4a+1)+1$$

a integer

Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Ind Hyp: n = k. $2^{2k} = 3a + 1$ for integer *a*.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

$$= 12a+3+1$$

$$= 3(4a+1)+1$$

a integer \implies (4a+1) is an integer.

Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for n = 0. $2^0 = 1$

Ind Hyp: n = k. $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)} = 2^{2k} * 2^{2}$$

$$= 4 * 2^{2k}$$

$$= 4 * (3a+1)$$

$$= 12a+3+1$$

$$= 3(4a+1)+1$$

 $a \text{ integer} \implies (4a+1) \text{ is an integer.}$

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

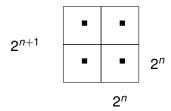
Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.

$$2^{n+1}$$



Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

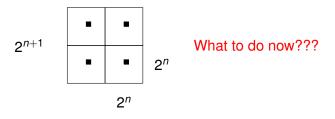
Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:

Any $2^n \times 2^n$ square can be tiled with a hole at the center.

$$2^{n+1}$$



Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

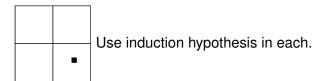
Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:



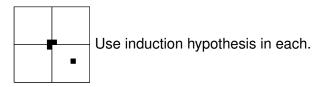
Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:



Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

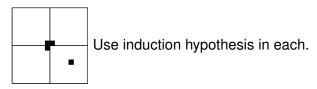
Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square.



Use L-tile and ...

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

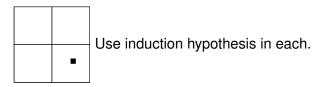
Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square.



Use L-tile and ... we are done.

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

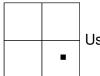
Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:

"Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**" Consider $2^{n+1} \times 2^{n+1}$ square.



Use induction hypothesis in each.

Use L-tile and ... we are done.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2. Induction Step:

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) = "n is either a prime or a product of primes."

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) ="n is either a prime or a product of primes. "

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

$$\implies$$
 " $n+1=a\cdot b$

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) = "n is either a prime or a product of primes."

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

$$\implies$$
 " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" $n+1$ can be written as the product of the prime factors!

Theorem: Every natural number n > 1 is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: n = 2.

Induction Step:

P(n) = "n is either a prime or a product of primes."

Either n+1 is a prime or $n+1 = a \cdot b$ where 1 < a, b < n+1.

P(n) says nothing about a, b!

Strong Induction Principle: If P(0) and

$$(\forall k \in N)((P(0) \wedge ... \wedge P(k)) \implies P(k+1)),$$

then $(\forall k \in N)(P(k))$.

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \Longrightarrow \cdots$$

Strong induction hypothesis: "a and b are products of primes"

 \implies " $n+1 = a \cdot b =$ (factorization of a)(factorization of b)" n+1 can be written as the product of the prime factors!

Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \wedge P(1) \cdots P(k)$.

Let $Q(k) = P(0) \wedge P(1) \cdots P(k)$. By the induction principle: "If Q(0), and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ "

Let
$$Q(k) = P(0) \land P(1) \cdots P(k)$$
.
By the induction principle:
"If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ "
Also, $Q(0) \equiv P(0)$, and

Let
$$Q(k) = P(0) \land P(1) \cdots P(k)$$
.
By the induction principle:
"If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ "
Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))
```

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))
```

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))
```

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))
```

```
Let Q(k) = P(0) \land P(1) \cdots P(k).

By the induction principle:

"If Q(0), and (\forall k \in N)(Q(k) \Longrightarrow Q(k+1)) then (\forall k \in N)(Q(k))"

Also, Q(0) \equiv P(0), and (\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))

(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))

\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))
```

Let
$$Q(k) = P(0) \land P(1) \cdots P(k)$$
.
By the induction principle:
"If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then $(\forall k \in N)(Q(k))$ "
Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$
 $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$
 $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$
 $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$
Strong Induction Principle: If $P(0)$ and $(\forall k \in N)((P(0) \land \dots \land P(k)) \Longrightarrow P(k+1))$,
then $(\forall k \in N)(P(k))$.

Let
$$Q(k) = P(0) \land P(1) \cdots P(k)$$
.
By the induction principle:
"If $Q(0)$, and $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$ then
 $(\forall k \in N)(Q(k))$ "
Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$
 $(\forall k \in N)(Q(k) \Longrightarrow Q(k+1))$
 $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow (P(0) \cdots P(k) \land P(k+1)))$
 $\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \Longrightarrow P(k+1))$
Strong Induction Principle: If $P(0)$ and
 $(\forall k \in N)((P(0) \land \dots \land P(k)) \Longrightarrow P(k+1))$,
then $(\forall k \in N)(P(k))$.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$. Consider smallest m, with $\neg P(m)$,

```
If (\forall n)P(n) is not true, then (\exists n)\neg P(n).
```

Consider smallest m, with $\neg P(m)$,

$$P(m-1) \Longrightarrow P(m)$$
 must be false (assuming $P(0)$ holds.)

```
If (\forall n)P(n) is not true, then (\exists n)\neg P(n).
```

Consider smallest m, with $\neg P(m)$,

$$P(m-1) \Longrightarrow P(m)$$
 must be false (assuming $P(0)$ holds.)

This is a proof of the induction principle! I.e.,

$$\neg(\forall nP(n)) \implies ((\exists n)\neg(P(n-1) \implies P(n)).$$

```
If (\forall n)P(n) is not true, then (\exists n)\neg P(n).
```

Consider smallest m, with $\neg P(m)$,

$$P(m-1) \Longrightarrow P(m)$$
 must be false (assuming $P(0)$ holds.)

This is a proof of the induction principle! I.e.,

$$\neg(\forall nP(n)) \implies \big((\exists n)\neg(P(n-1) \implies P(n)\big).$$

(Contrapositive of Induction principle (assuming P(0))

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest m, with $\neg P(m)$,

 $P(m-1) \Longrightarrow P(m)$ must be false (assuming P(0) holds.)

This is a proof of the induction principle!

I.e.,

$$\neg(\forall nP(n)) \implies ((\exists n)\neg(P(n-1) \implies P(n)).$$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest m, with $\neg P(m)$,

 $P(m-1) \Longrightarrow P(m)$ must be false (assuming P(0) holds.)

This is a proof of the induction principle! I.e.,

$$\neg(\forall nP(n)) \implies ((\exists n)\neg(P(n-1) \implies P(n)).$$

(Contrapositive of Induction principle (assuming P(0))

It assumes that there is a smallest m where P(m) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Thm: For every natural number $n \ge 12$, n = 4x + 5y.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases:

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12), P(13)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12), P(13), P(14)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12) , P(13) , P(14) , P(15).

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12), P(13), P(14), P(15). Holds for all.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12) , P(13) , P(14) , P(15). Holds for all. Strong Induction step:

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12) , P(13) , P(14) , P(15). Holds for all.

Strong Induction step:

Recursive call is correct: P(n-4)

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12) , P(13) , P(14) , P(15). Holds for all.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$.

Thm: For every natural number $n \ge 12$, n = 4x + 5y. Instead of proof, let's write some code!

```
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12), P(13), P(14), P(15). Holds for all.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$.

Slight differences: showed for all $n \ge 16$ that $\bigwedge_{i=4}^{n-1} P(i) \implies P(n)$.

Theorem: All horses have the same color.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color. Induction step P(k+1)?

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k+1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k + 1

Second k have same color by P(k). 1,2,3,...,k,k + 1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k + 1

Second k have same color by P(k). 1,2,3,...,k,k+1

A horse in the middle in common! 1,2,3,...,k,k+1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2,3,...,k,k+1

Second k have same color by P(k). 1,2,3,...,k,k+1 A horse in the middle in common! 1,2,3,...,k,k+1

A norse in the middle in common: 1,2,3,...,K,K+1

All k must have the same color. 1, 2, 3, ..., k, k+1

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2

Second k have same color by P(k).

A horse in the middle in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2

Second k have same color by P(k). 1,2

A horse in the middle in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2

Second k have same color by P(k). 1,2

A horse in the middle in common! 1,2

No horse in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k). 1,2

Second k have same color by P(k). 1,2

A horse in the middle in common! 1,2

No horse in common!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Fix base case.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Fix base case.

...Still doesn't work!!

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Fix base case.

...Still doesn't work!!

(There are two horses is \neq For all two horses!!!)

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Fix base case.

...Still doesn't work!!

(There are two horses is $\not\equiv$ For all two horses!!!)

Of course it doesn't work.

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

New Base Case: P(2): there are two horses with same color.

Induction Hypothesis: P(k) - Any k horses have the same color.

Induction step P(k+1)?

First k have same color by P(k).

Second k have same color by P(k).

A horse in the middle in common!

Fix base case.

...Still doesn't work!!

(There are two horses is \neq For all two horses!!!)

Of course it doesn't work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!

Today: More induction.

Today: More induction. (P(0))

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1))))$$

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$,

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Strong Induction:

Today: More induction.

$$(P(0) \wedge ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$. Statement is proven!

Strong Induction:

$$(P(0) \wedge ((\forall n \leq kP(n)) \implies P(k+1)))$$

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \le kP(n)) \implies P(k+1))) \implies (\forall n \in N)(P(n))$$

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \le kP(n)) \implies P(k+1))) \implies (\forall n \in N)(P(n))$$

Also Today: strengthened induction hypothesis.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \le kP(n)) \implies P(k+1))) \implies (\forall n \in N)(P(n))$$

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first n odds is n^2 .

Hole anywhere.

Not same as strong induction.

Today: More induction.

$$(P(0) \land ((\forall k \in N)(P(k) \Longrightarrow P(k+1)))) \Longrightarrow (\forall n \in N)(P(n))$$

Statement to prove: P(n) for n starting from n_0

Base Case: Prove $P(n_0)$.

Ind. Step: Prove. For all values, $n \ge n_0$, $P(n) \Longrightarrow P(n+1)$.

Statement is proven!

Strong Induction:

$$(P(0) \land ((\forall n \le kP(n)) \implies P(k+1))) \implies (\forall n \in N)(P(n))$$

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first n odds is n^2 .

Hole anywhere.

Not same as strong induction.

Induction \equiv Recursion.