

Termination.	
Every non-terminated day a job crossed an item off the list. Total size of lists? <i>n</i> jobs, <i>n</i> length list. n^2 Terminates in $\leq n^2$ steps!	
Matching when done.	
Lemma: Every job is matched at end. Proof: If not, a job <i>j</i> must have been rejected <i>n</i> times. Every candidate has been proposed to by <i>j</i> ,	
and Improvement lemma \implies each candidate has a job on a string.	
and each job is on at most one string.	
<i>n</i> candidates and <i>n</i> jobs. Same number of each.	
\implies <i>j</i> must be on some candidate's string!	
Contradiction.	

7/19

10/19

It gets better every day for candidates. Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, i', on candidate c's string for any day t' > tis at least as good as j. Example: Candidate "1" has job "C" on string on day 5. 1 has job "A" on string on day 7. Does 1 prefer "C" or "A"? c - 1', j - C', j' - A', t = 5, t' = 7.Improvement Lemma says 1 prefers 'A'. Day 10: Can 1 have "A" on a string? Yes. 1 prefers day 10 job as much as day 7 job. Here, j = j'. Why is lemma true? Proof Idea: Candidate can always keep the previous job on the string. 8/19 Matching is Stable. Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm. Proof: Assume there is a rogue couple; (i, c^*) *i* prefers *c*^{*} to *c*.

Job *j* proposes to c^* before proposing to *c*. So c^* rejected *j* (since he moved on)

By improvement lemma, c* prefers j* to j.

Contradiction!

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day *t* a candidate *c* has a job *j* on a string, any job, j', on *c*'s string for any day t' > t is at least as good as *j*.

Proof: P(k)- "job on c's string is at least as good as *j* on day t + k"

P(0) – true. Candidate has *j* on string.

Assume P(k). Let j' be job **on string** on day t + k.

On day t + k + 1, job j' still on string. Candidate *c* can choose j', or do better with another job, j''

That is, $j' \ge j$ by induction hypothesis. And j'' is better than j' by algorithm. \implies Candidate does at least as well as with j.

 $P(k) \implies P(k+1)$. And by principle of induction, lemma holds for every day after *t*.

9/19

12/19

(A) Contradiction.

(B) Uses the improvement lemma.

(C) Induction.

(D) The algorithm description.

(A), (B), (C), (D).

11/19

 c^* prefers *j* to j^* .

Is the Job-Proposes better for jobs? for candidates? **Definition:** A matching is *x*-optimal if *x*'s partner is its best partner in any stable pairing. **Definition:** A matching is *x*-pessimal if *x*'s partner is its worst partner in any stable pairing. Definition: A matching is job optimal if it is x-optimal for all jobs x. .. and so on for job pessimal, candidate optimal, candidate pessimal. Claim: The optimal partner for a job must be first in its preference list. True / False? False! Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution! Question: Is there a job or candidate optimal matching? Is it possible: j-optimal pairing different from the j'-optimal matching! Yes? No? How about for candidates? Theorem: Job Propose and Reject produces candidate-pessimal pairing. T – pairing produced by JPR.

Good for jobs? candidates?

S – worse stable pairing for candidate c. In T, (c, j) is pair. In S, (c, j^*) is pair. c prefers j to j*. T is job optimal, so *j* prefers *c* to its partner in *S*. (c, i) is Rogue couple for S S is not stable. Contradiction.

Understanding A: 1,2 B: 1,2	Optimality 1: A,B 2: B,A	: by example.	
Consider pairing: Stable? Yes.	(<i>A</i> ,1),(<i>B</i> ,2).		
couple.	est <i>B</i> can do i	ng. If (A,2) are pair, (n a stable pairing.	A,1) is rogue
Also optimal for A A: 1,2 B: 2,1	1: B,A	o pessimal for A,B,1 a	nd 2.
Pairing <i>S</i> : (<i>A</i> ,1), Pairing <i>T</i> : (<i>A</i> ,2),			
Which is optimal Which is optimal Pessimality?			
Quick Questior	IS.		

l

13/19

16/19

How does one make it better for candidates?
Propose and Reject - stable matching algorithm. One side proposes.
Jobs Propose ⇒ job optimal. Candidates propose. ⇒ optimal for candidates.

Job Propose and Candidate Reject is optimal! For jobs? For candidates? Theorem: Job Propose and Reject produces a job-optimal pairing. Proof: Assume not: some job is not paired with its optimal candidate. Let t be first day some job j gets rejected by its optimal candidate c. There is a stable pairing **S** where *j* and *c* are paired. j^* - knocks j off of c's string on day $t \implies c$ prefers j^* to j By choice of t, j^* likes c at least as much as its optimal candidate. \implies *j*^{*} prefers *c* to its partner *c*^{*} in *S*. (j^*, c) – Rogue couple for S. So S is not a stable pairing. Contradiction. Notes: S - stable. $(j^*, c^*) \in S$. But (j^*, c) is rogue couple! Used Well-Ordering principle. **Residency Matching..**

The method was used to match residents to hospitals. Hospital optimaluntil 1990's...Resident optimal. Another variation: couples.

17/19

14/19

18/19

15/19

Takeaways.

Analysis of cool algorithm with interesting goal: stability. "Economic": different utilities. Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:

Stability:

Improvement Lemma plus every day the job gets to choose. Optimality proof:

Job Optimality:

contradiction of the existence of a better *stable* pairing. that is, no rogue couple by improvement, job choice, and well ordering principle. Candidate Pessimality: contradiction plus job optimality implies better pairing.

19/19

contradiction plus job optimality implies better pain