
Stable Matching Problem

▶ n candidates and n jobs.

▶ Each job has a ranked preference list of candidates.

▶ Each candidate has a ranked preference list of jobs.

Jobs Candidates
A 1 2 3 1 C A B
B 1 2 3 2 A B C
C 2 1 3 3 A C B

How should they be matched?

▶ Maximize total satisfaction.

▶ Maximize number of first choices.

▶ Minimize difference between preference ranks.

1 / 19

Objectives

Produce a matching that one cannot improve upon!

Definition: A matching is disjoint set of n job-candidate pairs.

Definition: A rogue couple j ,c∗ for a pairing S:
j and c∗ prefer each other to their partners in S

2 / 19

A stable matching??

Given a set of preferences.

Is there a stable matching?

How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

3 / 19

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal (candidate).

4 / 19

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2X 3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C C C
2 C B, CX B A,BX A
3 B

5 / 19

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.

What can we prove about it?
Does this terminate?

...produce a matching?

....a stable matching?

Who does “better”: jobs or candidates?

6 / 19

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list. n2

Terminates in ≤ n2 steps!

7 / 19

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string,
any job, j ′, on candidate c’s string for any day t ′ > t
is at least as good as j .

Example: Candidate “1” has job “C” on string on day 5.

1 has job “A” on string on day 7.

Does 1 prefer “C” or “A”?

c - ’1’, j - ’C’, j ′ - ’A’, t = 5, t ′ = 7.

Improvement Lemma says 1 prefers ’A’.

Day 10: Can 1 have “A” on a string? Yes.

1 prefers day 10 job as much as day 7 job. Here, j = j ′.

Why is lemma true?

Proof Idea: Candidate can always keep the previous job on the
string.

8 / 19

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate c has a job j on a string, any job, j ′, on c’s
string for any day t ′ > t is at least as good as j .

Proof:
P(k)- - “job on c’s string is at least as good as j on day t +k ”

P(0)– true. Candidate has j on string.

Assume P(k). Let j ′ be job on string on day t +k .

On day t +k +1, job j ′ still on string.
Candidate c can choose j ′, or do better with another job, j ′′

That is, j ′ ≥ j by induction hypothesis.
And j ′′ is better than j ′ by algorithm.

=⇒ Candidate does at least as well as with j .

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

9 / 19

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job j must have been rejected n times.

Every candidate has been proposed to by j ,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ j must be on some candidate’s string!

Contradiction.

10 / 19

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
Propose-and-Reject algorithm.

Proof:
Assume there is a rogue couple; (j ,c∗)

j c

j∗ c∗ j prefers c∗ to c.

c∗ prefers j to j∗.

Job j proposes to c∗ before proposing to c.

So c∗ rejected j (since he moved on)

By improvement lemma, c∗ prefers j∗ to j .

Contradiction!

11 / 19

Question: Proof of Job Propose and Reject a stable pairing uses?

(A) Contradiction.

(B) Uses the improvement lemma.

(C) Induction.

(D) The algorithm description.

(A), (B), (C), (D).

12 / 19

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ’s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ’s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.
True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

j-optimal pairing different from the j ′-optimal matching!
Yes? No?

13 / 19

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing. If (A,2) are pair, (A,1) is rogue

couple.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

Pessimality? 14 / 19

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: some job is not paired with its optimal candidate.

Let t be first day some job j gets rejected by its optimal candidate c.

There is a stable pairing S where j and c are paired.

j∗ - knocks j off of c’s string on day t =⇒ c prefers j∗ to j

By choice of t , j∗ likes c at least as much as its optimal candidate.

=⇒ j∗ prefers c to its partner c∗ in S.

(j∗,c) – Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (j∗,c∗) ∈ S. But (j∗,c) is rogue couple!

Used Well-Ordering principle.

15 / 19

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.
S – worse stable pairing for candidate c.
In T , (c, j) is pair.
In S, (c, j∗) is pair.
c prefers j to j∗.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

16 / 19

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.
Candidates propose. =⇒ optimal for candidates.

17 / 19

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

18 / 19

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Stability:

Improvement Lemma plus every day the job gets to choose.
Optimality proof:

Job Optimality:
contradiction of the existence of a better stable pairing.

that is, no rogue couple by improvement, job choice, and well
ordering principle. Candidate Pessimality:

contradiction plus job optimality implies better pairing.

19 / 19

