Stable Matching Problem

Stable Matching Problem

- n candidates and n jobs.

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

$$
|\quad|\left|\begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~B}
\end{array}\right|
$$

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

$$
|\quad|\left|\begin{array}{ccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
3 & \mathrm{~A} & \mathrm{C} \\
\mathrm{~B}
\end{array}\right|
$$

How should they be matched?

- Maximize total satisfaction.

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

$$
|\quad|\left|\begin{array}{ccc}
\mathrm{A} & \mathrm{~B} & \mathrm{~B} \\
\mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array}\right|
$$

How should they be matched?

- Maximize total satisfaction.
- Maximize number of first choices.

Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

$$
|\quad|
$$

How should they be matched?

- Maximize total satisfaction.
- Maximize number of first choices.
- Minimize difference between preference ranks.

Objectives

Produce a matching that one cannot improve upon!

Objectives

Produce a matching that one cannot improve upon!
Definition: A matching is disjoint set of n job-candidate pairs.

Objectives

Produce a matching that one cannot improve upon!
Definition: A matching is disjoint set of n job-candidate pairs.
Definition: A rogue couple j, c^{*} for a pairing S : j and c^{*} prefer each other to their partners in S

A stable matching??

Given a set of preferences.

A stable matching??

Given a set of preferences.
Is there a stable matching?

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A	B	C	D
B	C	A	D
C	A	B	D
D	A	B	C

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

A stable matching??

Given a set of preferences.
Is there a stable matching?
How does one find it?
Consider a single type version: stable roommates.

The Propose and Reject Algorithm.

The Propose and Reject Algorithm.

Each Day:

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal (candidate).

Example.

$$
\left|\right|
$$

$\left|\right.$| Candidates | | | |
| :--- | :---: | :---: | :---: |
| 1 | | | |
| 2 | | | |
| 3 | A | A | B |
| A | C | B | |$|$

Example.

Jobs				Candidates			
A	1	2	3	1	C	A	B
B	1	2	3	2	A	B	C
C	2	1	3	3	A	C	B

	Day 1	Day 2	Day 3	Day 4	Day 5
1					
2					
3					

Example.

Jobs						Candidates				
A	1		2	3		1	C		A	B
B	1		2	3		2	A		B	C
C	2		1	3		3	A		C	B

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, B				
2	C				
3					

Example.

Jobs				Candidates			
A	1	2	3	1	C	A	B
B	X	2	3	2	A	B	C
C	2	1	3	3	A	C	B

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, 鹿				
2	C				
3					

Example.

Jobs				Candidates			
A	1	2	3	1	C	A	B
B	X	2	3	2	A	B	C
C	2	1	3	3	A	C	B

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, 思	A			
2	C	B, C			
3					

Example.

$$
\left.\left|\right| \quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, 鹿	A			
2	C	B, X			
3					

Example.

$$
\left.\left|\right| \quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	A , C		
2	C	B, X	B		
3					

Example.

$$
\left.\left|\right| \quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	X, C		
2	C	B, X	B		
3					

Example.

$$
\left.\left|\right| \quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	X, C	C	
2	C	B, X	B	A, B	
3					

Example.

$$
\left.\left|\right| \begin{array}{l}
\mathrm{X} \\
X
\end{array}\right) \left.\quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
2 & 3 & \mathrm{~A} \\
3 & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	X, C	C	
2	C	B, X	B	A,K	
3					

Example.

$$
\left.\left|\right| \begin{array}{l}
\mathrm{X} \\
X
\end{array}\right) \left.\quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
2 & 3 & \mathrm{~A} \\
3 & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	X, C	C	C
2	C	B, X	B	A,K	A
3					B

Example.

$$
\left.\left|\right| \begin{array}{l}
\mathrm{X} \\
X
\end{array}\right) \left.\quad\left|\right| \begin{array}{ccc}
\mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
2 & 3 & \mathrm{~A} \\
3 & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~B}
\end{array} \right\rvert\,
$$

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, K	A	X, C	C	C
2	C	B, X	B	A,K	A
3					B

The Propose and Reject Algorithm.

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?
Does this terminate?

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?
Does this terminate?
...produce a matching?

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?
Does this terminate?
...produce a matching?
....a stable matching?

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?
Does this terminate?
...produce a matching?
....a stable matching?
Who does "better": jobs or candidates?

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
What can we prove about it?
Does this terminate?
...produce a matching?
....a stable matching?
Who does "better": jobs or candidates?

Termination.

Termination.

Every non-terminated day a job crossed an item off the list.

Termination.

Every non-terminated day a job crossed an item off the list. Total size of lists?

Termination.

Every non-terminated day a job crossed an item off the list. Total size of lists? n jobs, n length list.

Termination.

Every non-terminated day a job crossed an item off the list. Total size of lists? n jobs, n length list. n^{2}

Termination.

Every non-terminated day a job crossed an item off the list.
Total size of lists? n jobs, n length list. n^{2}
Terminates in $\leq n^{2}$ steps!

It gets better every day for candidates.

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string,

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or "A"?

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7.
Does 1 prefer "C" or "A"?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or " A "?

$$
c-1 \text { ', } j-\text { 'C' }^{\prime}, j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or " A "?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string?

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or " A "?

$$
c-\quad 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or " A "?

$$
c-1 \text { ', } j-\text { 'C' }^{\prime}, j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or "A"?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7.
Does 1 prefer " C " or "A"?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.
Why is lemma true?

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7.
Does 1 prefer " C " or "A"?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.
Why is lemma true?

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7.
Does 1 prefer " C " or "A"?

$$
c-{ }^{\prime} 1 \text { ', } j \text { - 'C', } j^{\prime} \text { - 'A', } t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.
Why is lemma true?
Proof Idea:

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or "A"?

$$
c-1{ }^{\prime}, j-{ }^{\prime} \mathrm{C}^{\prime}, j^{\prime}-\mathrm{A}^{\prime}, t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.
Why is lemma true?
Proof Idea: Candidate can always keep the previous job on the string.

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on candidate c^{\prime} s string for any day $t^{\prime}>t$ is at least as good as j.
Example: Candidate " 1 " has job " C " on string on day 5.
1 has job "A" on string on day 7 .
Does 1 prefer " C " or "A"?

$$
c-1{ }^{\prime}, j-{ }^{\prime} \mathrm{C}^{\prime}, j^{\prime}-\mathrm{A}^{\prime}, t=5, t^{\prime}=7 .
$$

Improvement Lemma says 1 prefers ' A '.
Day 10: Can 1 have " A " on a string? Yes.
1 prefers day 10 job as much as day 7 job. Here, $j=j^{\prime}$.
Why is lemma true?
Proof Idea: Candidate can always keep the previous job on the string.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.
Proof:

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)-$ true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string. Candidate c can choose j^{\prime},

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)-$ true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is,

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)-$ true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string. Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)-$ true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string. Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.
And $j^{\prime \prime}$ is better than j^{\prime} by algorithm.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)-$ true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.
And $j^{\prime \prime}$ is better than j^{\prime} by algorithm.
\Longrightarrow Candidate does at least as well as with j.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.
And $j^{\prime \prime}$ is better than j^{\prime} by algorithm.
\Longrightarrow Candidate does at least as well as with j.

$$
P(k) \Longrightarrow P(k+1) .
$$

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.
And $j^{\prime \prime}$ is better than j^{\prime} by algorithm.
\Longrightarrow Candidate does at least as well as with j.

$$
P(k) \Longrightarrow P(k+1)
$$

And by principle of induction, lemma holds for every day after t.

Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate c has a job j on a string, any job, j^{\prime}, on c 's string for any day $t^{\prime}>t$ is at least as good as j.

Proof:

$P(k)$ - - "job on c 's string is at least as good as j on day $t+k$ "
$P(0)$ - true. Candidate has j on string.
Assume $P(k)$. Let j^{\prime} be job on string on day $t+k$.
On day $t+k+1$, job j^{\prime} still on string.
Candidate c can choose j^{\prime}, or do better with another job, $j^{\prime \prime}$
That is, $j^{\prime} \geq j$ by induction hypothesis.
And $j^{\prime \prime}$ is better than j^{\prime} by algorithm.
\Longrightarrow Candidate does at least as well as with j.

$$
P(k) \Longrightarrow P(k+1)
$$

And by principle of induction, lemma holds for every day after t.

Matching when done.

Lemma: Every job is matched at end.

Matching when done.

Lemma: Every job is matched at end.
Proof:

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j,

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.
$\Longrightarrow j$ must be on some candidate's string!

Matching when done.

Lemma: Every job is matched at end.
Proof:
If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.
$\Longrightarrow j$ must be on some candidate's string!

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.
$\Longrightarrow j$ must be on some candidate's string!
Contradiction.

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job j must have been rejected n times.
Every candidate has been proposed to by j, and Improvement lemma
\Longrightarrow each candidate has a job on a string.
and each job is on at most one string.
n candidates and n jobs. Same number of each.
$\Longrightarrow j$ must be on some candidate's string!
Contradiction.

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

$$
\begin{aligned}
& j^{*}=c^{*} \\
& j=c
\end{aligned}
$$

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Job j proposes to c^{*} before proposing to c.

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Job j proposes to c^{*} before proposing to c.
So c^{*} rejected j (since he moved on)

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Job j proposes to c^{*} before proposing to c.
So c^{*} rejected j (since he moved on)
By improvement lemma, c^{*} prefers j^{*} to j.

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Job j proposes to c^{*} before proposing to c.
So c^{*} rejected j (since he moved on)
By improvement lemma, c^{*} prefers j^{*} to j.
Contradiction!

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by Propose-and-Reject algorithm.

Proof:

Assume there is a rogue couple; $\left(j, c^{*}\right)$

Job j proposes to c^{*} before proposing to c.
So c^{*} rejected j (since he moved on)
By improvement lemma, c^{*} prefers j^{*} to j.
Contradiction!

Question: Proof of Job Propose and Reject a stable pairing uses?
(A) Contradiction.
(B) Uses the improvement lemma.
(C) Induction.
(D) The algorithm description.

Question: Proof of Job Propose and Reject a stable pairing uses?
(A) Contradiction.
(B) Uses the improvement lemma.
(C) Induction.
(D) The algorithm description.
(A), (B), (C), (D).

Good for jobs? candidates?

Is the Job-Proposes better for jobs?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner
is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?
Is it possible:

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?
Is it possible:
j-optimal pairing different from the j^{\prime}-optimal matching!

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?
Is it possible:
j-optimal pairing different from the j '-optimal matching!
Yes?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?
Is it possible:
j-optimal pairing different from the j '-optimal matching!
Yes? No?

Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?
Definition: A matching is x-optimal if x 's partner is its best partner in any stable pairing.
Definition: A matching is x-pessimal if x 's partner is its worst partner in any stable pairing.
Definition: A matching is job optimal if it is x-optimal for all jobs x.
..and so on for job pessimal, candidate optimal, candidate pessimal.
Claim: The optimal partner for a job must be first in its preference list. True / False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!
Question: Is there a job or candidate optimal matching?
Is it possible:
j-optimal pairing different from the j '-optimal matching!
Yes? No?

Understanding Optimality: by example.
 A: 1,2
 B: 1,2 $2: \quad B, A$

Understanding Optimality: by example.
 B: 1,2 2: B,A

Consider pairing: $(A, 1),(B, 2)$.

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable?

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing.

Understanding Optimality: by example.
 A: 1,2
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

Understanding Optimality: by example.
 A: 1,2
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing.

Understanding Optimality: by example.
 A: 1,2
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.

Understanding Optimality: by example.
 A: 1,2
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.

Also optimal for $A, 1$ and 2.

Understanding Optimality: by example.
 A: 1,2
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A,B

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A, B

Pairing $S:(A, 1),(B, 2)$.

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A, B

Pairing $S:(A, 1),(B, 2) . \quad$ Stable?

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A,B

Pairing $S:(A, 1),(B, 2) . \quad$ Stable? Yes.

Understanding Optimality: by example.
 A: 1,2
 1: A,B
 B: 1,2
 2: B,A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A,B

Pairing $S:(A, 1),(B, 2) . \quad$ Stable? Yes.

Understanding Optimality: by example.
 A: 1,2 1: A,B
 B: 1,2 2 B, A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2) . \quad$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$.

Understanding Optimality: by example.
 A: 1,2 1: A,B
 B: 1,2 2 B, A

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.
Stable? Yes.
Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing.
So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ?

Understanding Optimality: by example.
 A: 1,2 1: A,B
 B: 1,2 \quad 2: B,A

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing.
So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? S

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A, B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? $S \quad$ Which is optimal for B ?

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? $S \quad$ Which is optimal for B ? S

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? $S \quad$ Which is optimal for B ? S Which is optimal for 1 ?

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? S
Which is optimal for B ? S Which is optimal for 1 ? T

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2.

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.

Which is optimal for A ? S Which is optimal for 1 ? T

Which is optimal for B ? S
Which is optimal for 2 ?

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2.

$$
\begin{array}{llll}
\text { A: } & 1,2 & 1: & \text { B,A } \\
\text { B: } & 2,1 & 2: & \text { A,B }
\end{array}
$$

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.

Which is optimal for A ? S Which is optimal for 1 ? T

Which is optimal for B ? S
Which is optimal for 2? T

Understanding Optimality: by example.
 A: 1,2 1: A,B
 $\begin{array}{lll}B: & 1,2 & 2: \\ B, A\end{array}$

Consider pairing: $(A, 1),(B, 2)$.

Stable? Yes.

Optimal for B ?
Notice: only one stable pairing. If $(A, 2)$ are pair, $(A, 1)$ is rogue couple.

So this is the best B can do in a stable pairing. So optimal for B.
Also optimal for $A, 1$ and 2 . Also pessimal for $A, B, 1$ and 2 .
A: 1,2
1: B,A
B: 2,1
2: A, B

Pairing $S:(A, 1),(B, 2)$ Stable? Yes.
Pairing T : $(A, 2),(B, 1)$. Also Stable.
Which is optimal for A ? S Which is optimal for 1 ? T

Which is optimal for B ? S

Pessimality?

Job Propose and Candidate Reject is optimal!

For jobs?

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing. Proof:

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing. Proof:
Assume not:

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:

Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:

Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:

Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day t

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes:

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable. $\left(j^{*}, c^{*}\right) \in S$.

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable. $\left(j^{*}, c^{*}\right) \in S$. But $\left(j^{*}, c\right)$

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable. $\left(j^{*}, c^{*}\right) \in S$. But $\left(j^{*}, c\right)$ is rogue couple!

Job Propose and Candidate Reject is optimal!

For jobs? For candidates?
Theorem: Job Propose and Reject produces a job-optimal pairing.
Proof:
Assume not: some job is not paired with its optimal candidate.
Let t be first day some job j gets rejected by its optimal candidate c.
There is a stable pairing S where j and c are paired.
j^{*} - knocks j off of c 's string on day $t \Longrightarrow c$ prefers j^{*} to j
By choice of t, j^{*} likes c at least as much as its optimal candidate.
$\Longrightarrow j^{*}$ prefers c to its partner c^{*} in S.
$\left(j^{*}, c\right)$ - Rogue couple for S.
So S is not a stable pairing. Contradiction.
Notes: S - stable. $\left(j^{*}, c^{*}\right) \in S$. But $\left(j^{*}, c\right)$ is rogue couple!
Used Well-Ordering principle.

How about for candidates?

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.
T - pairing produced by JPR.
S - worse stable pairing for candidate c.
In $T,(c, j)$ is pair.
In $S,\left(c, j^{*}\right)$ is pair.
c prefers j to j^{*}.
T is job optimal, so j prefers c to its partner in S.
(c, j) is Rogue couple for S
S is not stable.
Contradiction.

Quick Questions.

How does one make it better for candidates?

Quick Questions.

How does one make it better for candidates?
Propose and Reject - stable matching algorithm. One side proposes.

Quick Questions.

How does one make it better for candidates?
Propose and Reject - stable matching algorithm. One side proposes.

Jobs Propose \Longrightarrow job optimal.

Quick Questions.

How does one make it better for candidates?
Propose and Reject - stable matching algorithm. One side proposes.

Jobs Propose \Longrightarrow job optimal.
Candidates propose.

Quick Questions.

How does one make it better for candidates?
Propose and Reject - stable matching algorithm. One side proposes.
Jobs Propose \Longrightarrow job optimal.
Candidates propose. \Longrightarrow optimal for candidates.

Residency Matching..

Residency Matching..

The method was used to match residents to hospitals.

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
..until 1990's...

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
..until 1990's...Resident optimal.

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
..until 1990's...Resident optimal.
Another variation: couples.

Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
..until 1990's...Resident optimal.
Another variation: couples.

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

Takeaways.

Analysis of cool algorithm with interesting goal: stability. "Economic": different utilities.

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
"Economic": different utilities.
Definition of optimality: best utility in stable world.

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
"Economic": different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
"Economic": different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability. Induction over steps of algorithm.

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
"Economic": different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability. Induction over steps of algorithm.
Proofs carefully use definition:

Takeaways.

Analysis of cool algorithm with interesting goal: stability.
"Economic": different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.
Induction over steps of algorithm.
Proofs carefully use definition:
Stability:
Improvement Lemma plus every day the job gets to choose.
Optimality proof:
Job Optimality:
contradiction of the existence of a better stable pairing.
that is, no rogue couple by improvement, job choice, and well
ordering principle. Candidate Pessimality:
contradiction plus job optimality implies better pairing.

