
Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.



Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.



Summary

x has an inverse modulo m if gcd(x ,m) = 1

Next:
Compute gcd!
Compute Inverse modulo m.



Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)



More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.



Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.



Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x



GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.



Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)



Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2



Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?



Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.



Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−⌊x/y⌋ ·b =
1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12



Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(x ,y) and

d = ax +by .



Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b( mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · ( mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.



Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y) =⇒ d = bx +(a−⌊ x

y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).



Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as a unique (up to reordering) product of primes.



No shared common factors, and products.

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.



Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .



Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.



Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.


