Lecture Outline

Continue with modular arithmetic.
Euclid's Algorithm for computing GCD. Runtime.
Euclid's Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Recap: Review of theorem from last time.

Thm: If $\operatorname{gcd}(x, m)=1$, then x has a multiplicative inverse modulo m.
Proof Sketch: The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m.
For $x=4$ and $m=6$. All products of $4 \ldots$

$$
S=\{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}=\{0,4,8,12,16,20\}
$$

reducing $(\bmod 6)$

$$
S=\{0,4,2,0,4,2\}
$$

Not distinct. Common factor 2.
For $x=5$ and $m=6$.

$$
S=\{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}=\{0,5,4,3,2,1\}
$$

All distinct, contains 1 ! 5 is multiplicative inverse of $5(\bmod 6)$.
$5 x=3(\bmod 6)$ What is x ? Multiply both sides by 5 .
$x=15=3(\bmod 6)$
$4 x=3(\bmod 6)$ No solutions. Can't get an odd.
$4 x=2(\bmod 6)$ Two solutions! $x=2,5(\bmod 6)$
Very different for elements with inverses.

Summary

x has an inverse modulo m if $\operatorname{gcd}(x, m)=1$
Next:
Compute gcd!
Compute Inverse modulo m.

Divisibility...

Notation: $d \mid x$ means " d divides x " or

$$
x=k d \text { for some integer } k
$$

Fact: If $d \mid x$ and $d \mid y$ then $d \mid(x+y)$ and $d \mid(x-y)$.
Proof: $d \mid x$ and $d \mid y$ or
$x=\ell d$ and $y=k d$
$\Longrightarrow x-y=k d-\ell d=(k-\ell) d \Longrightarrow d \mid(x-y)$

More divisibility

Notation: $d \mid x$ means " divides x " or
$x=k d$ for some integer k.
Lemma 1: If $d \mid x$ and $d \mid y$ then $d \mid y$ and $d \mid \bmod (x, y)$.
Proof:

$$
\begin{aligned}
\bmod (x, y) & =x-\lfloor x / y\rfloor \cdot y \\
& =x-s \cdot y \text { for integer } s \\
& =k d-s \ell d \text { for integers } k, \ell \\
& =(k-s \ell) d
\end{aligned}
$$

Therefore $d \mid \bmod (x, y)$. And $d \mid y$ since it is in condition.
Lemma 2: If $d \mid y$ and $d \mid \bmod (x, y)$ then $d \mid y$ and $d \mid x$. Proof...: Similar. Try this at home.
GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$.
Proof: x and y have same set of common divisors as x and $\bmod (x, y)$ by Lemma.
Same common divisors \Longrightarrow largest is the same.

Euclid's algorithm.

GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$.

```
gcd (x, y)
    if (y = 0) then
        return x
    else
        return gcd(y, mod(x, y)) ***
```

Theorem: Euclid's algorithm computes the greatest common divisor of x and y if $x \geq y$.
Proof: Use Strong Induction.
Base Case: $y=0$, " x divides y and x "
\Longrightarrow " x is common divisor and clearly largest."
Induction Step: $\bmod (x, y)<y \leq x$ when $x \geq y$
call in line (***) meets conditions plus arguments "smaller"
and by strong induction hypothesis
computes $\operatorname{gcd}(y, \bmod (x, y))$
which is $\operatorname{gcd}(x, y)$ by GCD Mod Corollary.

Size of a number.

Before discussing running time of gcd procedure...
What is the "size" of $1,000,000$?
Number of digits: 7.
Number of bits: 21.
For a number x, what is its size in bits?

$$
n=b(x) \approx \log _{2} x
$$

GCD procedure is fast.

Theorem: GCD uses $2 n$ "divisions" where n is the number of bits.

Is this good? Better than trying all numbers in $\{2, \ldots y / 2\}$?
Check 2 , check 3 , check 4 , check $5 \ldots$, check $y / 2$.
2^{n-1} divisions! Exponential dependence on size!
101 bit number. $2^{100} \approx 10^{30}=$ "million, trillion, trillion" divisions!
$2 n$ is much faster! .. roughly 200 divisions.

Algorithms at work.

" $\operatorname{gcd}(x, y)$ " at work.

```
gcd(700,568)
    gcd(568, 132)
        gcd(132, 40)
            gcd(40, 12)
            gcd(12, 4)
            gcd(4, 0)
                4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.
(The second is less than the first.)

Proof.

```
gcd (x, y)
    if (y = 0) then
        return x
    else
        return gcd(y, mod(x, y))
```

Theorem: GCD uses $O(n)$ "divisions" where n is the number of bits.

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

 and becomes the first argument, in the next one.

$$
\bmod (x, y)=x-y\left\lfloor\frac{x}{y}\right\rfloor=x-y \leq x-x / 2=x / 2
$$

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that

$$
a x+b y=\operatorname{gcd}(x, y)=d \quad \text { where } d=\operatorname{gcd}(x, y)
$$

"Make d out of sum of multiples of x and y."
What is multiplicative inverse of x modulo m ?
By extended GCD theorem, when $\operatorname{gcd}(x, m)=1$.

$$
\begin{gathered}
a x+b m=1 \\
a x \equiv 1-b m \equiv 1(\bmod m)
\end{gathered}
$$

So a is multiplicative inverse of x if $\operatorname{gcd}(a, x)=1!!$
Example: For $x=12$ and $y=35, \operatorname{gcd}(12,35)=1$.

$$
(3) 12+(-1) 35=1 \text {. }
$$

$$
a=3 \text { and } b=-1 .
$$

The multiplicative inverse of $12(\bmod 35)$ is 3 .

Make d out of x and $y . . ?$

```
gcd (35,12)
    gcd(12, 11) ;; gcd(12, 35%12)
    gcd(11, 1) ; ; gcd(11, 12%11)
        gcd (1,0)
        1
```

How did gcd get 11 from 35 and 12?
$35-\left\lfloor\frac{35}{12}\right\rfloor 12=35-(2) 12=11$
How does gcd get 1 from 12 and 11 ?

$$
12-\left\lfloor\frac{12}{11}\right\rfloor 11=12-(1) 11=1
$$

Algorithm finally returns 1 .
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.
$1=12-(1) 11=12-(1)(35-(2) 12)=(3) 12+(-1) 35$
Get 11 from 35 and 12 and plugin.... Simplify. $a=3$ and $b=-1$.

Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod(x,y))
            return (d, b, a - floor(x/y) * b)
```

Claim: Returns (d, a, b): $d=\operatorname{gcd}(x, y)$ and $d=a x+b y$. Example: $a-\lfloor x / y\rfloor \cdot b=$
$1-\lfloor 11 / 1\rfloor \cdot 0=10-\lfloor 12 / 11\rfloor \cdot 1=-11-\lfloor 35 / 12\rfloor \cdot(-1)=3$

```
ext-gcd (35,12)
    ext-gcd(12, 11)
        ext-gcd(11, 1)
        ext-gcd(1,0)
        return (1,1,0) ; ; 1 = (1) 1 + (0) 0
        return (1,0,1) ; ; 1 = (0)11 + (1)1
    return (1,1,-1) ; ; 1 = (1) 12 + (-1) 11
return (1,-1, 3) ; ; 1 = (-1)35 +(3)12
```


Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(x, y)$ and

$$
d=a x+b y
$$

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$
Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns $\left(d^{*}, a, b\right)$ with

$$
d^{*}=a y+b(\bmod (x, y))
$$

ext- $\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d=d^{*} & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
        (d, a, b) := ext-gcd(y, mod (x,y))
        return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.
Proof: n is either prime (base cases)
or $n=a \times b$ and a and b can be written as product of primes.
Thm: The prime factorization of n is unique up to reordering.
Fundamental Theorem of Arithmetic: Every natural number can be written as a unique (up to reordering) product of primes.

No shared common factors, and products.

Claim: For $x, y, z \in \mathbb{Z}^{+}$with $\operatorname{gcd}(x, y)=1$ and $x \mid y z$ then $x \mid z$.
Idea: x doesn't share common factors with y
so it must divide z.
Euclid: $1=a x+b y$.
Observe: $x \mid a x z$ and $x \mid$ byz (since $x \mid y z$), and x divides the sum.
$\Longrightarrow x \mid a x z+b y z$
And $a x z+b y z=z$, thus $x \mid z$.

Fundamental Theorem of Arithmetic: Uniqueness

Thm: The prime factorization of n is unique up to reordering.
Assume not.

$$
n=p_{1} \cdot p_{2} \cdots p_{k} \text { and } n=q_{1} \cdot q_{2} \cdots q_{l}
$$

Fact: If $p \mid q_{1} \ldots q_{l}$, then $p=q_{j}$ for some j.
If $\operatorname{gcd}\left(p, q_{l}\right)=1, \Longrightarrow p_{1} \mid q_{1} \cdots q_{l-1}$ by Claim.
If $\operatorname{gcd}\left(p, q_{l}\right)=d$, then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, $p=q_{l}=d$.
End proof of fact.
Proof by induction.
Base case: If $I=1, p_{1} \cdots p_{k}=q_{1}$.
But if q_{1} is prime, only prime factor is q_{1} and $p_{1}=q_{1}$ and $I=k=1$.
Induction step: From Fact: $p_{1}=q_{j}$ for some j.

$$
n / p_{1}=p_{2} \ldots p_{k} \text { and } n / q_{j}=\prod_{i \neq j} q_{i}
$$

These two expressions are the same up to reordering by induction.
And p_{1} is matched to q_{j}.

Simple Chinese Remainder Theorem.

CRT Thm: For m, n s.t. $\operatorname{gcd}(m, n)=1$, there exists a unique solution $x(\bmod m n)$ s.t.

$$
x=a(\bmod m) \text { and } x=b(\bmod n)
$$

Proof (solution exists):

Consider $u=n\left(n^{-1}(\bmod m)\right)$.

$$
\begin{aligned}
& u=0(\bmod n) \quad u=1(\bmod m) \\
& \text { Consider } v=m\left(m^{-1}(\bmod n)\right) \text {. } \\
& v=1(\bmod n) \quad v=0(\bmod m) \\
& \text { Let } x=a u+b v \text {. } \\
& x=a(\bmod m) \text { since } b v=0(\bmod m) \text { and } a u=a(\bmod m) \\
& x=b(\bmod n) \text { since } a u=0(\bmod n) \text { and } b v=b(\bmod n) \\
& \text { This shows there is a solution. }
\end{aligned}
$$

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution $x(\bmod m n)$.

Proof (uniqueness):

If not, two solutions, x and y.
$(x-y) \equiv 0(\bmod m)$ and $(x-y) \equiv 0(\bmod n)$.
$\Longrightarrow(x-y)$ is multiple of m and n
$\operatorname{gcd}(m, n)=1 \Longrightarrow$ no common primes in factorization m and n $\Longrightarrow m n \mid(x-y)$
$\Longrightarrow x-y \geq m n \Longrightarrow x, y \notin\{0, \ldots, m n-1\}$.
Thus, only one solution modulo mn .

