Lecture Outline

Continue with modular arithmetic.

Euclid's Algorithm for computing GCD. Runtime. Euclid's Extended Algorithm. Fundamental Theorem of Arithmetic. Chinese Remainder Theorem.

Recap: Review of theorem from last time.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \dots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

. . .

For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6) $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2.

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

 $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$

 $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions! $x = 2,5 \pmod{6}$

Very different for elements with inverses.

Summary

x has an inverse modulo m if gcd(x,m) = 1

Next:

Compute gcd! Compute Inverse modulo *m*.

Divisibility...

Notation: d|x means "*d* divides *x*" or x = kd for some integer *k*.

Fact: If d|x and d|y then d|(x+y) and d|(x-y). **Proof:** d|x and d|y or

 $x = \ell d$ and y = kd

 $\implies x-y = kd - \ell d = (k-\ell)d \implies d|(x-y)$

More divisibility

Notation: d|x means "*d* divides *x*" or x = kd for some integer *k*.

Lemma 1: If d|x and d|y then d|y and $d| \mod (x, y)$. Proof: $\operatorname{mod}(x, y) = x - \lfloor x/y \rfloor \cdot y$ $= x - s \cdot y$ for integer s $= kd - s\ell d$ for integers k, ℓ $= (k - s\ell)d$

Therefore $d \mod (x, y)$. And $d \mid y$ since it is in condition.

Lemma 2: If d|y and $d| \mod (x, y)$ then d|y and d|x. **Proof...:** Similar. Try this at home.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod (x, y) by Lemma. Same common divisors \implies largest is the same.

Euclid's algorithm.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).

```
gcd (x, y)
if (y = 0) then
  return x
else
  return gcd(y, mod(x, y)) ***
```

Theorem: Euclid's algorithm computes the greatest common divisor of *x* and *y* if $x \ge y$.

Proof: Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*" \implies "*x* is common divisor and clearly largest." **Induction Step:** mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis

computes gcd(y, mod(x, y))

```
which is gcd(x, y) by GCD Mod Corollary.
```

Before discussing running time of gcd procedure... What is the "size" of 1,000,000? Number of digits: 7. Number of bits: 21.

For a number *x*, what is its size in bits?

 $n = b(x) \approx \log_2 x$

Theorem: GCD uses 2*n* "divisions" where *n* is the number of bits.

Is this good? Better than trying all numbers in $\{2, \dots y/2\}$? Check 2, check 3, check 4, check 5 ..., check y/2. 2^{n-1} divisions! Exponential dependence on size! 101 bit number. $2^{100} \approx 10^{30} =$ "million, trillion, trillion" divisions! 2n is much faster! ... roughly 200 divisions.

Algorithms at work.

```
"gcd(x, y)" at work.

gcd(700, 568)

gcd(568, 132)

gcd(132, 40)

gcd(40, 12)

gcd(12, 4)

gcd(12, 4)

gcd(4, 0)

4
```

Notice: The first argument decreases rapidly. At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Proof.

```
gcd (x, y)
if (y = 0) then
  return x
else
  return gcd(y, mod(x, y))
```

Theorem: GCD uses O(n) "divisions" where *n* is the number of bits.

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

Rreptot \mathbb{F}_{2} act: Decall dotats live transport degree as a overly rable. **Oase 29:** With the initial straining the straining of the

$$mod(x,y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$$

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we **find** a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that

ax + by = gcd(x, y) = d where d = gcd(x, y).

"Make *d* out of sum of multiples of *x* and *y*."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So *a* is multiplicative inverse of *x* if gcd(a, x) = 1!!

Example: For x = 12 and y = 35, gcd(12, 35) = 1.

```
(3)12 + (-1)35 = 1.
```

a = 3 and b = -1.

The multiplicative inverse of 12 (mod 35) is 3.

Make *d* out of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1
```

```
How did gcd get 11 from 35 and 12?
35 - |\frac{35}{12}|12 = 35 - (2)12 = 11
```

```
How does gcd get 1 from 12 and 11? 12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1
```

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

Extended GCD Algorithm.

```
ext-qcd(x, y)
  if y = 0 then return(x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x, y))
          return (d, b, a - floor(x/y) * b)
Claim: Returns (d, a, b): d = gcd(x, y) and d = ax + by.
Example: a - |x/y| \cdot b =
1 - |11/1| \cdot 0 = 10 - |12/11| \cdot 1 = -11 - |35/12| \cdot (-1) = 3
    ext-qcd(35, 12)
      ext-qcd(12, 11)
         ext-qcd(11, 1)
           ext-qcd(1,0)
           return (1,1,0);; 1 = (1)1 + (0) 0
         return (1,0,1); 1 = (0)11 + (1)1
      return (1, 1, -1); 1 = (1)12 + (-1)11
   return (1, -1, 3); 1 = (-1)35 + (3)12
```

Extended GCD Algorithm.

Theorem: Returns (d, a, b), where d = gcd(x, y) and

d = ax + by.

Correctness.

Proof: Strong Induction.¹ **Base:** ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y. **Induction Step:** Returns (d,A,B) with d = Ax + ByInd hyp: **ext-gcd**(y, mod (x,y)) returns (d^* ,a,b) with $d^* = ay + b(mod (<math>x$,y))

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

$$d = d^* = ay + b \cdot (\mod(x, y))$$
$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$
$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Review Proof: step.

Recursively: $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx + (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes. Proof: *n* is either prime (base cases) or $n = a \times b$ and *a* and *b* can be written as product of primes.

Thm: The prime factorization of *n* is unique up to reordering.

<u>Fundamental Theorem of Arithmetic:</u> Every natural number can be written as a unique (up to reordering) product of primes.

No shared common factors, and products.

Claim: For $x, y, z \in \mathbb{Z}^+$ with gcd(x, y) = 1 and x|yz then x|z.

Idea: *x* doesn't share common factors with *y* so it must divide *z*.

Euclid: 1 = ax + by.

Observe: x | axz and x | byz (since x | yz), and x divides the sum. $\implies x | axz + byz$ And axz + byz = z, thus x | z.

Fundamental Theorem of Arithmetic: Uniqueness

Thm: The prime factorization of *n* is unique up to reordering.

Assume not.

 $n = p_1 \cdot p_2 \cdots p_k$ and $n = q_1 \cdot q_2 \cdots q_l$.

Fact: If $p|q_1 \dots q_l$, then $p = q_j$ for some j.

If $gcd(p,q_l) = 1$, $\implies p_1|q_1 \cdots q_{l-1}$ by Claim. If $gcd(p,q_l) = d$, then *d* is a common factor. If both prime, both only have 1 and themselves as factors. Thus, $p = q_l = d$. End proof of fact.

Proof by induction.

Base case: If l = 1, $p_1 \cdots p_k = q_1$.

But if q_1 is prime, only prime factor is q_1 and $p_1 = q_1$ and l = k = 1.

Induction step: From Fact: $p_1 = q_j$ for some *j*.

 $n/p_1 = p_2 \dots p_k$ and $n/q_j = \prod_{i \neq j} q_i$.

These two expressions are the same up to reordering by induction. And p_1 is matched to q_j .

Simple Chinese Remainder Theorem.

CRT Thm: For m, n s.t. gcd(m, n)=1, there exists a unique solution $x \pmod{mn}$ s.t.

 $x = a \pmod{m}$ and $x = b \pmod{n}$

Proof (solution exists):

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$ Consider $v = m(m^{-1} \pmod{n})$. $v = 1 \pmod{n}$ $v = 0 \pmod{m}$ Let x = au + bv. $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$ This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution *x* (mod *mn*).

Proof (uniqueness):

If not, two solutions, *x* and *y*.

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.
 $\Rightarrow (x-y)$ is multiple of *m* and *n*
 $gcd(m,n) = 1 \Rightarrow$ no common primes in factorization *m* and *n*
 $\Rightarrow mn|(x-y)$
 $\Rightarrow x-y \ge mn \Rightarrow x, y \notin \{0, ..., mn-1\}.$
Thus, only one solution modulo *mn*.