
Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.

Runtime.
Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.

Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.

Chinese Remainder Theorem.

Lecture Outline

Continue with modular arithmetic.

Euclid’s Algorithm for computing GCD.
Runtime.

Euclid’s Extended Algorithm.
Fundamental Theorem of Arithmetic.
Chinese Remainder Theorem.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...

S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.

...
For x = 4 and m = 6. All products of 4...

S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...

S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S =

{0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}

= {0,4,8,12,16,20}
reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)

S = {0,4,2,0,4,2}
Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct.

Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.

S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S =

{0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}

= {0,5,4,3,2,1}
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct,

contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1!

5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6)

What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x?

Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.

x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15

= 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6)

No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions.

Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.

4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6)

Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions!

x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Recap: Review of theorem from last time.
Thm: If gcd(x ,m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set S = {0x ,1x , . . . ,(m−1)x} contains
y ≡ 1 mod m if all distinct modulo m.
...
For x = 4 and m = 6. All products of 4...
S = {0(4),1(4),2(4),3(4),4(4),5(4)}= {0,4,8,12,16,20}

reducing (mod 6)
S = {0,4,2,0,4,2}

Not distinct. Common factor 2.

For x = 5 and m = 6.
S = {0(5),1(5),2(5),3(5),4(5),5(5)}= {0,5,4,3,2,1}

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

5x = 3 (mod 6) What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)

4x = 3 (mod 6) No solutions. Can’t get an odd.
4x = 2 (mod 6) Two solutions! x = 2,5 (mod 6)

Very different for elements with inverses.

Summary

x has an inverse modulo m if gcd(x ,m) = 1

Next:
Compute gcd!
Compute Inverse modulo m.

Summary

x has an inverse modulo m if gcd(x ,m) = 1

Next:
Compute gcd!

Compute Inverse modulo m.

Summary

x has an inverse modulo m if gcd(x ,m) = 1

Next:
Compute gcd!
Compute Inverse modulo m.

Summary

x has an inverse modulo m if gcd(x ,m) = 1

Next:
Compute gcd!
Compute Inverse modulo m.

Divisibility...

Notation: d |x means “d divides x” or

x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).

Proof: d |x and d |y or
x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd

= (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d

=⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

Divisibility...

Notation: d |x means “d divides x” or
x = kd for some integer k .

Fact: If d |x and d |y then d |(x +y) and d |(x −y).
Proof: d |x and d |y or

x = ℓd and y = kd

=⇒ x −y = kd − ℓd = (k − ℓ)d =⇒ d |(x −y)

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).

Proof: mod (x ,y) = x −⌊x/y⌋ ·y
= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s

= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ

= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y).

And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar.

Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home.

.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.

Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

More divisibility

Notation: d |x means “d divides x” or
x = kd for some integer k .

Lemma 1: If d |x and d |y then d |y and d | mod (x ,y).
Proof: mod (x ,y) = x −⌊x/y⌋ ·y

= x −s ·y for integer s
= kd −sℓd for integers k , ℓ
= (k −sℓ)d

Therefore d | mod (x ,y). And d |y since it is in condition.

Lemma 2: If d |y and d | mod (x ,y) then d |y and d |x .
Proof...: Similar. Try this at home. .

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).
Proof: x and y have same set of common divisors as x and
mod (x ,y) by Lemma.
Same common divisors =⇒ largest is the same.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.

Base Case: y = 0, “x divides y and x”
=⇒ “x is common divisor and clearly largest.”

Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”

Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”

and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis

computes gcd(y , mod (x ,y))
which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Euclid’s algorithm.

GCD Mod Corollary: gcd(x ,y) = gcd(y , mod (x ,y)).

gcd (x, y)
if (y = 0) then

return x
else

return gcd(y, mod(x, y)) ***

Theorem: Euclid’s algorithm computes the greatest common divisor
of x and y if x ≥ y .

Proof: Use Strong Induction.
Base Case: y = 0, “x divides y and x”

=⇒ “x is common divisor and clearly largest.”
Induction Step: mod (x ,y)< y ≤ x when x ≥ y

call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis
computes gcd(y , mod (x ,y))

which is gcd(x ,y) by GCD Mod Corollary.

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

Size of a number.

Before discussing running time of gcd procedure...

What is the “size” of 1,000,000?

Number of digits: 7.

Number of bits: 21.

For a number x , what is its size in bits?

n = b(x)≈ log2 x

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good?

Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2,

check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3,

check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4,

check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number.

2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster!

.. roughly 200 divisions.

GCD procedure is fast.

Theorem: GCD uses 2n “divisions” where n is the number of bits.

Is this good? Better than trying all numbers in {2, . . .y/2}?

Check 2, check 3, check 4, check 5 . . . , check y/2.

2n−1 divisions! Exponential dependence on size!

101 bit number. 2100 ≈ 1030 = “million, trillion, trillion” divisions!

2n is much faster! .. roughly 200 divisions.

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)

gcd(568, 132)
gcd(132, 40)

gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)

gcd(40, 12)
gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)

gcd(4, 0)
4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.

At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Algorithms at work.

“gcd(x, y)” at work.

gcd(700,568)
gcd(568, 132)

gcd(132, 40)
gcd(40, 12)

gcd(12, 4)
gcd(4, 0)

4

Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.

(The second is less than the first.)

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.

One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.

1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.

O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,

and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋=

x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2

= x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Proof.
gcd (x, y)

if (y = 0) then
return x

else
return gcd(y, mod(x, y))

Theorem: GCD uses O(n) ”divisions” where n is the number of bits.

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y ≤ x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y > x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y > x/2, then

⌊x
y
⌋= 1,

mod (x ,y) = x −y⌊x
y
⌋= x −y≤x −x/2 = x/2

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y)

= d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1

ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.

The multiplicative inverse of 12 (mod 35) is 3.

Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y there are integers
a,b such that

ax +by = gcd(x ,y) = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a is multiplicative inverse of x if gcd(a,x) = 1!!

Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Make d out of x and y ..?

gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)

gcd(1,0)
1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?

35−⌊35
12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?

12−⌊12
11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin....

Simplify. a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify.

a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify.

a = 3 and b =−1.

Make d out of x and y ..?

gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)

gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11= 12− (1)(35− (2)12)= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .

Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)

ext-gcd(12, 11)
ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)

ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)

return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−⌊x/y⌋ ·b =
1−⌊11/1⌋ ·0 = 1

0−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1

return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 1

0−⌊12/11⌋ ·1 =−1

1−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example: a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−1

1−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(x ,y) and

d = ax +by .

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d ,a,b), where d = gcd(x ,y) and

d = ax +by .

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d∗,a,b) with

d∗ = ay +b(mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = d∗ = ay +b · (mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y) =⇒ d = bx +(a−⌊ x

y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y)

=⇒ d = bx +(a−⌊ x
y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y) =⇒ d = bx +(a−⌊ x

y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).

Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y) =⇒ d = bx +(a−⌊ x

y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as a unique (up to reordering) product of primes.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as a unique (up to reordering) product of primes.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as a unique (up to reordering) product of primes.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as a unique (up to reordering) product of primes.

No shared common factors, and products.

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.

No shared common factors, and products.

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.

No shared common factors, and products.

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.

No shared common factors, and products.

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.

n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.

If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.

If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.

Thus, p = ql = d .
End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.

Base case: If l = 1, p1 · · ·pk = q1.
But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step:

From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .

n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .
These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Fundamental Theorem of Arithmetic: Uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n = p1 ·p2 · · ·pk and n = q1 ·q2 · · ·ql .

Fact: If p|q1 . . .ql , then p = qj for some j .

If gcd(p,ql) = 1, =⇒ p1|q1 · · ·ql−1 by Claim.
If gcd(p,ql) = d , then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p = ql = d .

End proof of fact.

Proof by induction.
Base case: If l = 1, p1 · · ·pk = q1.

But if q1 is prime, only prime factor is q1 and p1 = q1 and l = k = 1.

Induction step: From Fact: p1 = qj for some j .
n/p1 = p2 . . .pk and n/qj = ∏i ̸=j qi .

These two expressions are the same up to reordering by induction.
And p1 is matched to qj .

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):

Consider u = n(n−1 (mod m)).
u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n)

u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n)

v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m)

since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)

x = b (mod n) since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)

x = b (mod n) since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n)

since au = 0 (mod n) and bv = b (mod n)
This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: For m,n s.t. gcd(m,n)=1, there exists a unique solution
x (mod mn) s.t.

x = a (mod m) and x = b (mod n)

Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):

If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).

=⇒ (x −y) is multiple of m and n
gcd(m,n) = 1 =⇒ no common primes in factorization m and n

=⇒ mn|(x −y)
=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n

=⇒ mn|(x −y)
=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn

=⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.

Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).
=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n
=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

