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Today

Last time:
Shared (and sort of kept) secrets

Today: Dealing with errors
Tolerate (identified) loss: erasure codes
Tolerate (unidentified) corruption: error correcting codes

... using a beautiful decoding algorithm
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Review: Interpolation via Linear Equations

Problem: Find coefficients for P(x) = ak−1xk−1 +ak−2xk−2 + · · ·+a1x +a0
going through points (x1,y1); (x2,y2) · · ·(xk ,yk ).

... k points gives degree (at most) k −1 polynomial – working mod p:

ak−1xk−1
1 + · · ·+a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+a0 ≡ y2 (mod p)

...
...

...
ak−1xk−1

k + · · ·+a0 ≡ yk (mod p)

Will this always work? Yes!
Linear algebra language: Powers of different x are linearly independent...
Also follows from polynomial properties:

Modular Arithmetic Fact: Exactly 1 polynomial of degree ≤ d with arithmetic
modulo prime p contains d +1 pts.
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Another Uses of Polynomials! Erasure Codes

Problem: Satellite communication is unreliable – may lose packets.
⇒We want to get the data even if some packets are lost (erased)

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.
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Exploring the Problem

Problem parameters: n packet message, channel that loses up to k packets.

“Can’t get something for nothing theorem” (information theory version):
Can’t send n packets of information in < n packets
⇒ If we might lose k packets, must send ≥ n+k packets

We want: Any n packets should allow reconstruction of n packet message.

Where have we seen something like this.....
Any n point values allow reconstruction of degree n−1 polynomial.

Surely that’s not just a coincidence, is it?
(Hint: If it was, I wouldn’t be standing here talking about it...)
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The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n+k packets and recover message?

Core idea: A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m1,m2, . . . ,mn – each b bits

1 Choose prime p a little larger than max(2b,n+k)

2 Find interpolating polynomial of (1,m1),(2,m2), . . . ,(n,mn)
P(x) = an−1xn−1 + · · ·a0 (mod p)

3 Send (1,P(1)),(2,P(2)), . . . ,(n+k ,P(n+k))

Any n of the n+k packets gives polynomial
With polynomial, compute P(1),P(2), . . . ,P(n) – the message!

Alternative: Message packets are coefficients – efficient, but less symmetric
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Erasure Codes – Summary

Satellite

GPS device

n packet message. So send n+k !

Lose k packets.

1 2
· · · · · ·

· · · n+k

1 2
· · · · · ·

· · · n+k

Any n packets is enough!

n packet message received

Must send n+k packets⇒ Optimal!
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Transmission Efficiency
How large a p do we need? Same basic issue as in secret sharing.

Using prime p – can encode p values, so need p ≥ 2b (prime so > 2b)
Can choose a prime between 2b and 2b+1

Larger than needed, but “excess” is 1 bit per packet
Also need to label packets, so you know which make it through

Math Magic: There are Galois Fields GF (2b) that “fit exactly”

Also need enough points for evaluation at different x (so > n+k )
⇒ Prime p >max(2b,nk )

Information content comparison:
Secret Sharing: each share is size of whole secret
Erasure Coding: Each packet has size 1/n of the whole message

Computation time:
Sender: Interpolation, evaluation
Receiver: Interpolation, evaluation
No worse than O(n2) field operations (and better algorithms!)
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Erasure Code: Example

Want to send 3-packet message ⟨1,4,4⟩

Need a polynomial through P(1) = 1, P(2) = 4, P(3) = 4

Interpolation... How?
Lagrange Interpolation
Linear System

Parameters:
Small messages (fit in GF (5))
n = 3 (length of message)
k = 3 (possible packets lost)

Working over GF (p) — need p big enough for packets, and p ≥ n+k

What should we use?

GF (7) works!
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Example: Sender’s Computation

Need a polynomial through P(1) = 1, P(2) = 4, P(3) = 4

Linear equations:

P(1) = a2 +a1 +a0 ≡ 1 (mod 7)
P(2) = 4a2 +2a1 +a0 ≡ 4 (mod 7)
P(3) = 2a2 +3a1 +a0 ≡ 4 (mod 7)

6a1 +3a0 = 2 (mod 7), 5a1 +4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 +4x +2

P(1) = 1, P(2) = 4, and P(3) = 4 and P(4) = 1, P(5) = 2, and P(6) = 0

Send packets: (1,1),(2,4),(3,4),(4,1),(5,2),(6,0)
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Example: Receiver’s Computation

Sender sends: (1,1),(2,4),(3,4),(4,1),(5,2),(6,0)

Packets 3, 4, and 5 lost – receiver gets: (1,1), (2,4), (6,0)
Reconstruct?

Lagrange or linear equations:

P(1) = a2 + a1 +a0 ≡ 1 (mod 7)
P(2) = 4a2 +2a1 +a0 ≡ 4 (mod 7)
P(6) = a2 +6a1 +a0 ≡ 0 (mod 7)

Solving linear equations (the magic happens...): a2 = 2, a1 = 4, and a0 = 2
P(x) = 2x2 +4x +2

Message? Evaluate! P(1) = 1, P(2) = 4, P(3) = 4
⇒ Message is ⟨1,4,4⟩
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A Harder Problem...

Erasure Codes:
Might completely lose packets
We know when they’re missing

... and which ones are missing

Error Correction:
Noisy Channel: corrupts k packets (rather than loss)

... and no indication which ones are corrupted!
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Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2
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The Scheme

Problem: Communicate n packets m1, . . . ,mn
... on noisy channel that corrupts ≤ k packets

Reed-Solomon Code:

1 Make a degree n−1 polynomial P(x) that encodes message

P(1) = m1, . . . ,P(n) = mn
Comment: could encode with packets as coefficients

2 Send P(1), . . . ,P(n+2k)

After noisy channel: Receive values r1, r2, . . . , rn+2k

Properties:
(1) P(i) = ri for at least n+k points
(2) P(x) is the unique degree n−1 polynomial

that contains ≥ n+k received points
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Properties: Proof

P(x): degree n−1 polynomial
Send P(1), . . . ,P(n+2k)
Receive r1, . . . , rn+2k
At most k i ’s where P(i) ̸= ri .

Properties:
(1) P(i) = ri for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k of the received points.

Proof: (1) Easy – only k corruptions.
(2) Is P(x) only solution?

Let Q(x) be a different solution (deg n−1 contains (any!) n+k points)
Q = {i : Q(i) = ri} |Q| ≥ n+k |Q̄| ≤ k
P = {i : P(i) = ri} |P| ≥ n+k |P̄| ≤ k

|Q̄∪P̄| ≤ 2k =⇒ |Q∩P| ≥ n
=⇒ P(i) = ri = Q(i) on Q∩P (≥ n values)
=⇒ Q(i) = P(i) at n points and degree ≤ n−1 =⇒ Q(x) = P(x)
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Example: Reed-Solomon

Message: ⟨3,0,6⟩

Reed-Solomon Code:
Interpolation gives P(x) = x2 +x +1 (mod 7)
P(1) = 3,P(2) = 0,P(3) = 6 (mod 7)

Send: P(1) = 3,P(2) = 0,P(3) = 6, and P(4) = 0,P(5) = 3

Receiver gets: r1 = 3, r2 = 1, r3 = 6, r4 = 0, r5 = 3
... 2nd packet corrupted (no indication for receiver though!)

But n+k = 3+1 = 4 points are good (P(i) = ri )
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Solving – The Slow Way

Brute Force!

For each subset of n+k points:
Fit degree n−1 polynomial, Q(x), to n of them
Check if consistent with n+k of the total points
If yes, output Q(x)

For a subset of n+k “good points” (ri = P(i)):
Good points, so reconstructs P(x) — verifies with k other good points
All good!

For any subset of n+k points:
unique degree n−1 polynomial Q(x) that fits ≥ n of them

... and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!
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Example

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3

Receiver gets: r1 = 3, r2 = 1, r3 = 6, r4 = 0, r5 = 3

Goal: Find P(x) = p2x2 +p1x +p0 that contains n+k = 3+1 = 4 points.

All equations...

p2 + p1 +p0 ≡ 3 (mod 7)
4p2 +2p1 +p0 ≡ 1 (mod 7)
2p2 +3p1 +p0 ≡ 6 (mod 7)
2p2 +4p1 +p0 ≡ 0 (mod 7)
4p2 +5p1 +p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve... no consistent solution!
Assume point 2 is wrong and solve... consistent solution!

With one error, only n+2 error locations – for general k (location sets)?
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The Problem For General k

P(x) = pn−1xn−1 + · · ·p0 and receive r1, r2, . . . , rn+2k

pn−1 + · · ·p0 ≡ r1 (mod p)
pn−12n−1 + · · ·p0 ≡ r2 (mod p)

·
pn−1in−1 + · · ·p0 ≡ ri (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ rm (mod p)

Error!! ... Where??? ... Brute Force!

Could be anywhere!!! ... so try everywhere
How many?

(n+2k
k

)
possibilities for k locations

Something like (n/k)k ... exponential in k

Can we find where the bad packets are efficiently?!?!?!
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Isolating The Bad Packets
E(1)(pn−1 + · · ·p0) ≡ r1E(1) (mod p)

0×

E(2)(pn−12n−1 + · · ·p0) ≡ r2E(2)

×0

(mod p)
...

E(m)(pn−1(m)n−1 + · · ·p0) ≡ rn+2k E(m) (mod p)

Idea: Multiply equation i by 0 if and only if P(i) ̸= ri .
Blots out error locations – makes them irrelevant!
All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek (in diagram above, e1 = 2)

Error-locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek )

E(x) = 0 if and only if x = ej for some j

Multiply equations by E(x) (above E(x) = (x−2))

All equations satisfied!!
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Example
Receiver gets: r1 = 3, r2 = 1, r3 = 6, r4 = 0, r5 = 3

Find P(x) = p2x2 +p1x +p0 that contains n+k = 3+1 = 4 of the points.

Set up linear equations...

(1−2)(p2 +p1 +p0) ≡ (3)(1−2) (mod 7)
(2−2)(4p2 +2p1 +p0) ≡ (1)(2−2) (mod 7)
(3−2)(2p2 +3p1 +p0) ≡ (6)(3−2) (mod 7)
(4−2)(2p2 +4p1 +p0) ≡ (0)(4−2) (mod 7)
(4−2)(4p2 +5p1 +p0) ≡ (3)(5−2) (mod 7)

(1+b0)(p2 +p1 +p0) ≡ (3)(1+b0) (mod 7)
(2+b0)(4p2 +2p1 +p0) ≡ (1)(2+b0) (mod 7)
(3+b0)(2p2 +3p1 +p0) ≡ (6)(3+b0) (mod 7)
(4+b0)(2p2 +4p1 +p0) ≡ (0)(4+b0) (mod 7)
(5+b0)(4p2 +5p1 +p0) ≡ (3)(5+b0) (mod 7)

Error-locator polynomial: (x−2)

Multiply equation i by (i−2). All equations satisfied!

But don’t know the error-locator polynomial!
Do know form: (x−e) or x +b0
In general: (x−e1)(x−e2) . . .(x−ek ) −→ xk +bk−1xk−1 + · · ·b0

4 unknowns (p0,p1,p2 and b0), but nonlinear equations.
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Nonlinear to Linear
E(1)(pn−1 + · · ·p0) ≡ r1E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ riE(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ rmE(m) (mod p)

m = n+2k satisfied equations, n+k unknowns – but nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0

Equations:
Q(i) = riE(i)

... and linear in ai and coefficients of E(x)!

But now more unknowns... how many?
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Unknowns in Q(x) and E(x)

E(x) has degree k :
E(x) = xk +bk−1xk−1 · · ·b0

=⇒ Leading coefficient is 1 – remaining k coefficients are unknowns

Q(x) = P(x)E(x) has degree n+k −1:

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k coefficients are unknowns

Total number of unknown coefficients: n+2k
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Solving for Q(x) and E(x) ... and P(x)
Let m = n+2k be number of points. For all points i ∈ {1,2, . . . ,m},

Q(i) = P(i)E(i)≡ riE(i) (mod p)

Gives n+2k linear equations:

From Q(x) From riE(x)
an+k−1 + . . .a0 ≡ r1(1+bk−1 + · · ·+b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ r2((2)k +bk−1(2)k−1 + · · ·+b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ rm((m)k +bk−1(m)k−1 + · · ·+b0) (mod p)

... and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

How cool is that?!?!?!
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Example

Receiver gets: r1 = 3, r2 = 1, r3 = 6, r4 = 0, r5 = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x +b0

Q(i)≡ riE(i) (mod 7)

a3 +a2 +a1 +a0 ≡ 3(1+b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2+b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3+b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4+b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5+b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5, and b0 =−2

Q(x) = x3 +6x2 +6x +5
E(x) = x−2 ←− Tells us error is at i = 2 How cool is that?!?!?!
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Example: Finishing Up

Q(x) = x3 +6x2 +6x +5 and E(x) = x−2

xˆ2 + x + 1
------------------------

x - 2 ) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2
----------

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x
---------------

x + 5
x - 2
-----

0

P(x) = x2 +x +1 (mod 7) =⇒ Message is P(1) = 3,P(2) = 0,P(3) = 6
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Error Correction: Berlekamp-Welsh

This efficient decoding algorithm is the Berlekamp-Welch algorithm
After inventors Edwyn Berlekamp and Lloyd Welch
Berkeley Connection: Berlekamp was professor at Berkeley 1971–2002

Review...

Message: m1,m2, . . . ,mn

Sender:
Make degree n−1 polynomial P(x) where P(i) = mi

Send n+2k values: P(1), . . . ,P(n+2k)

Receiver:
Receive r1, r2, . . . , rn+2k

Solve n+2k equations, Q(i) = riE(i) to find Q(x) = E(x)P(x)
Compute P(x) = Q(x)/E(x)
Compute P(1), . . . ,P(n)
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About the Computed Solution

Is there one and only one P(x) from the Berlekamp-Welsh algorithm?

Existence (is there one?): There is a P(x) and E(x) that satisfy equations.
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Unique solution for P(x)

Uniqueness (and only one): Any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)

Proof: We claim (proof on next slide!)

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x (2)

Equation (2) implies (1). Not as easy as it seems – subtle issue to handle:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1 and agree on n+2k points

E(x) and E ′(x) have at most k roots each (recall: roots are error locations)

So n places where neither is zero: can cross divide at n points.

=⇒ Q′(x)
E ′(x) =

Q(x)
E(x) equal on n points (Look Ma! No division by zero!)

Both degree ≤ n−1 =⇒ Same polynomial!
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What About That Claim?
Claim: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that for i ∈ {1,2, . . . ,n+2k},

Q(i) = riE(i)

Q′(i) = riE ′(i)

If E(i) = 0, then Q(i) = 0. ... and if E ′(i) = 0, then Q′(i) = 0.
=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when either E(i) or E ′(i) is zero.

When E ′(i) and E(i) are not zero (don’t divide by zero!)

Q′(i)
E ′(i)

=
Q(i)
E(i)

= ri .

Cross multiplying gives

Q′(i)E(i) = Q(i)E ′(i) = ri ,

for these points.
So holds when E(i) is zero, E ′(i) is zero, or neither is zero.
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Yaay!!

Berlekamp-Welsh algorithm decodes correctly when ≤ k errors!
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Concept Check 1

Context:
You want to send a message of length 4
You construct P(x) and send P(1),P(2), . . . ,P(8)
Receiver gets r1, r2, . . . , r8

Packets 1 and 4 are corrupted

Which of the following is not true?

(A) r1 ̸= P(1)

(B) The degree of P(x)E(x) is 5

(C) The degree of E(x) is 2

(D) The number of coefficients of P(x) is 4

(E) The number of coefficients of Q(x) is 5

Answer: (E) is false (degree 5; 6 coefficients)
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Concept Check 2

Context:
You want to send a message of length 4
You construct P(x) and send P(1),P(2), . . . ,P(8)
Receiver gets r1, r2, . . . , r8

Packets 1 and 4 are corrupted

Which of the following are true?

(A) E(x) = (x−1)(x−4)

(B) The number of coefficients in E(x) is 2

(C) The number of unknown coefficients in E(x) is 2

(D) E(x) = (x−1)(x−2)

(E) r4 ̸= P(4)

Answer: (A), (C), (E)
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Summary

Erasure codes: Communicate n packets with k erasures.
How many packets to send? n+k
How to encode? With polynomial P(x).

... of degree? n−1
Recover? Reconstruct P(x) with any n points!

Error Correcting Codes (ECC): Communicate n packets with k errors.
How many packets to send? n+2k
How to encode? With polynomial P(x).

... of degree? n−1
Recover?

Reconstruct error polynomial, E(x), and P(x)! Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Optimality. Perfection!
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