Counting — Part 2

CS70: Discrete Mathematics and Probability Theory

UC Berkeley — Summer 2025

Lecture 13
Ref: Still Note 10
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Combinatorial Proofs
Proving identities using counting
Binomial Theorem
Pascal’'s Triangle and Pascal’s Rule

Brief Midterm Review
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Combinatorial Proofs: Counting for Proving ldentities

Theorem: Forall n,k e N, () = (,,”,)-

Proof? In this case, the algebra is easy... but let's count instead.
Counting Proof (Sketch):
Question: Given the set of all n-bit strings, how many have k zeros?
(0
Kk

Given the set of all n-bit strings, how many have n— k ones?

(")

These are the same set! Length n:  k zeroes <= (n— k) ones.

(Z) B (nﬁk)'

Another view: # ways to choose k from n = # ways to exclude n— k.
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Binomial Coefficients 1

Question: What is (a+ b)"? Algebra? Yes.
... But also combinatorics. Counting.

(a+b)2=(a+b)(a+b)= (a+b) (a+b)
N——
all len-1 seq
= (a+b) a+ (a+b) b
SN—— N——
all len-1 seq all len-1 seq
=aa+ab-+ba+bb
N e

all length-2 sequences

(a+b)% = (a+b)?(a+b)=(aa+ab+ ba+ bb)(a+b)

all length-2 sequences
= (aa+ ab+ ba+ bb) a+ (aa+ ab+ba+ bb) b

all length-2 sequences all length-2 sequences

= aaa+ aab+ aba+ abb -+ baa+ bab + bba-+ bbb

all length-3 sequences
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Binomial Coefficients 2

(a+b)® = aaa+ aab+ aba+ abb + baa+ bab+ bba -+ bbb

all length-3 sequences

How many terms have 3 a's? Just one.

How many terms have 2 @s? Three —and all are a°b
How many terms have 1 a? Three —and all are ab?
General for (a+b)"

All length n sequences of a's and b’s
How many have exactly k as? (]) —and all are akp"*

So:
(a+b)" = i <n> ap"k
A\
Great algebraic identity... proved by counting - a combinatorial proof
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Pascal’s Triangle

Construction: Each entry in a triangle is sum of two above it.

Looks like... combinations:

Is this true (Pascal’s rule)? (1) = (7)) + (,"4)-
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Combinatorial Proof: Pascal’s Rule

Theorem: For n,k e N, (") = (1) + (,",).

Proof: How many size k subsets of {1,...,n+1}? (/")

How many size k subsets with value n+1? Remaining k—1 from {1,...,n}:

()

How many size k subsets without value n+1? All k come from {1,... n}:

n
(%) @
Any subset of size k is counted once, in either (1) or (2), so
n+1 n n
(")) (") :

Sum Rule: Size of union of disjoint sets of objects is sum of set size
Above: With and without value n+1 — disjoint.
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Hockey Stick Identity

Theorem:

(24)= (") ("

In Pascal’s Triangle

.. .. | ._(”;2)

oo ()

General Position

(”;4)
(”;3)

- )

Can prove algebraically... but what does it mean for counting?
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Hockey Stick Identity: Combinatorial Proof

Theorem: () = (1) +--+ ().
Proof: Count subsets of {1,2,...,n}.
First way of counting: Subsets of k items from n: (})

Second way of counting: What is smallest item in subset?

How many subsets where the smallest item is 1?

Remaining k — 1 from 2,...,n (n—1 choices): (;_})
How many subsets where the smallest item is 27

Remaining k — 1 from 3,...,n (n—2 choices): (; %)
How many subsets where the smallest item is 37

Remaining k — 1 from 4,...,n (n— 3 choices): (;_3)

Must leave at least k — 1 for remaining elements
= Pattern continues until ()

Conclusion: (1) = (7-1) +-+ (K-1).

k-1 U
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Sum of Binomial Coefficients

Theorem: (5) + ({) +---+ () =2".

Proof: How many subsets of {1,...,n}?

First way of counting: Sequence of n choices to include or exclude:
Element j is in or not in the subset: 2 choices
First rule of counting: 2 x 2-.- x 2 = 2" subsets

Second way of counting: Count subsets of each size:

How many subsets of size k? (}))

Every subset has a specific size (size k disjoint from size k+1)
Counting subsets of all sizes: () + () +---+ () subsets

Conclusion: () + (") +-+(§) =2" -
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Simple Inclusion/Exclusion: Two Sets

Sum Rule: For disjointsets Sand T, |[SUT|=|S|+|T|

Used to reason about all subsets
... adding number of subsets of size 1, 2, 3,...

Also reasoned about subsets that contained or didn’t contain an element
... first element, smallest element, ...

Inclusion/Exclusion Rule: Forany Sand T, |[SUT|=|S|+|T|—|SNT]|.

Countin § = |S]

Countin T = |T|

Elements in SN T, like x, are counted twice
Remove double-counts — —|SNT|

SNT

|ISUT|=|S|+|T|—|SNT]|
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Simple Inclusion/Exclusion: Two Set Example

Sum Rule: For disjointsets Sand T, |[SUT|=|S|+|T|

Used to reason about all subsets
... adding number of subsets of size 1, 2, 3,...

Also reasoned about subsets that contained or didn’t contain an element
... first element, smallest element, ...

Inclusion/Exclusion Rule: Forany Sand T, |[SUT|=|S|+|T|—|SNT].

Example: How many 10-digit numbers have 7 as their first or second digit?
S = 10-digit numbers with 7 as first digit. |S| = 10°
T = 10-digit numbers with 7 as second digit. |T|=10°
SN T = 10-digit numbers with 7 as first and second digit. |SNT| =108

Answer: 10-digit numbers with 7 as first or second digit: SUT

|ISUT|=[S|+|T|—|SNT|=10°+10°-108 = 1,900,000,000
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Inclusion/Exclusion: Three Sets

All with duplications: |[AUBU C|

A and C overlap overcounted, so subtract: —|ANC]|
A and B overlap overcounted, so subtract: —|AN B]
B and C overlap overcounted, so subtract: —|BN C|

What about the yellow area?
Added in 3 times (with A, B, and C)
Subtracted out 3 times (each intersection)
Too much!! Need to add back in: +|AnBNC|

|JAUBUC| = |A|+|B|+|C|—|ANnB|—|ANC|—|BNC|+|ANnBNC]

Generalizing: Add in all sets,
subtract out pairwise intersections,
add in 3-way intersections,
subtract out 4-way intersections,
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Inclusion/Exclusion: General

|A1U---UAp| =L |Ail = Lij |Ai VA 4+ Lk [Ai N A N Ag| - (=1)[Ar 0 - A

Proof Idea: How many times is each element counted?
Element ain msets: ac A, NA;,---NA,
For each i < m: Included in (7 ) i-way intersections

Total counts for a: () — (§) +(3) — (7) +-+ (=)™ (7

Binomial Theorem: (x +y)™ = (7)x™+ (T)x™ 1y + (F)x™2y2 .- (7)y™

Forx=1,y=-1:
(x+y)"=(1-1)"
(x=y)"=(0) - () ()—(Z’)+(T)+---+(—1)"’(%)
— ()= - (1)”“(5)

= 1={-E)+EN"(0)

Each element counted exactly once!
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Lecture 12 Summary

Combinatorial Proofs: Identity from counting same set in two ways
Basic combinations: () = (,”,) ways to include k = ways to exclude n— k

Binomial Coefficients and Binomial Theorem
Expansion of monomial power is ways of choosing a factors

Pascal’s Triangle and Pascal’s Identity: (";") = (") + ().

LHS: Count as number of subsets of n+ 1 items size k.
RHS: (,",) counts subsets of n+ 1 items with first item.
(}) counts subsets of n-+ 1 items without first item.
Disjoint — so add!
Hockey Stick Identity
Count as subsets, and count as subsets with given smallest element

Inclusion/Exclusion: Two sets of objects
Add number of each subtract intersection of sets
Sum Rule: If intersection is empty, nothing to subtract!

Inclusion/Exclusion: General
Alternate adding/subtracting: Add 1-way, subtract 2-way, add 3-way, ...
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Quick Midterm Review

The Course Until Now...
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Lecture 1 (Propositions and Predicates): Summary

Propositions are statements that are true or false.

Propositional forms use A,V, .

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: P —= Q = -PVvQ.

Contrapositive: -Q — =P (equivalentto P — Q)

Converse: Q = P (not equivalent)

Predicates: Statements with variables

Quantifiers: Universal Vx P(x) and existential 3y Q(y)

Now can state theorems (provable propositions)! And disprove false ones!

De Morgan’s Laws: “Flip and Distribute negation”
-(PvQ) < (-PA-Q)
-Vx P(x) < 3x -P(x).
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Concept Check: Propositions

True or False?

(A) PvQ = (-P = Q)?
(B) dne N(=P(n)) = —~VnP(n)?

(C) Yne N (Q(n)vP(n) = (Yne NQ(n))V (Vne N P(n))?

18/39
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Lecture 2 (Proofs): Summary

By Example:

To Prove: (3x)P(x). Give such an x and show P(x).
Direct Proof:

To Prove: P — Q. Assume P. reason forward, Prove Q.
By Contraposition:

To Prove: P — Q Assume —Q. Prove —P.

By Contradiction:
To Prove: P Assume —P. Prove False.

By Cases: informal.
Universal: show that statement holds in all cases.

Existence: used cases where one is true.
Either v/2 and /2 worked.

or v/2 and \@\/é worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...
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Concept Check: Proofs

Which type of proof does each describe?

(A) Prove P = Q using the equivalent -Q — —~P?
(B) Prove P = Q by assuming P and proving Q7?

(C) Prove P by showing -P — RA-R?
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Lecture 3 (Induction): Summary

Basic principle of induction — proving ¥n € N by simple induction
@ Prove P(0) directly (base case)
@ Prove that P(k) = P(k+1) for all k >0 (inductive step)

What if it doesn’t work? (almost but not quite)
@ Do we need to change the base case?
@ Would a stronger theorem (so a stronger induction hypothesis) work?

@ Would it help to “reach back” farther than just the previous step (just
P(k) isn’t sufficient to prove P(k +1))?
e Strong induction lets you use all P(0) through P(k)
o Make sure “reaching back farther than the previous step” doesn'’t
skip over the base case
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Concept Check: Induction

What are the three fundamental parts of an induction proof?
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Lecture 4 (Stable Matching): Summary

Analysis of cool algorithm with interesting goal: stability.

Stability seems like a good idea — is it possible?

@ Two-set instance: Yes
@ One-set instance: No

Can we find a stable matching?

@ Yes! Propose and Reject algorithm

@ Basic idea: Over time things get better for candidates, worse for jobs
@ Eventually reaches a balance

.. and we can (and did) prove it always finds a stable matching

Beyond stability — several stable solutions — which is better?
= For jobs? For candidates?
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Concept Check: Stable Matching

What kind of matching does the propose and reject algorithm produce?

What if candidates propose to jobs?

True or False: All matchings are job optimal or candidate optimal.
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Lecture 5 (Graphs 1): Summary

Graphs:
Definitions, basic properties (degree, path, cycle, tour, ...)
Degree-sum formula (sum of degrees is 2| E|)
Connected: Path between every pair of nodes
Connected Component: Maximal set of connected vertices

Euler tour and condition for existence (even degree vertices)
Necessary: Existence of tour = connected, even degree
Sufficient: Recursive algorithm for finding an Eulerian tour

Trees:

Definitions — four of them — all equivalent
Equivalence of definitions

= Two proved - others “left as an exercise for the reader”
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Concept Check: Basic Graphs

Are the following statements true or false?

(A) Removing a degree 1 vertex does change connectivity of graph.
(B) A graph with two odd-degree vertices has an Eulerian tour.

(C) Adding an edge anywhere in a tree creates a cycle.
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Lecture 6 (Graphs 2): Summary

Planar graphs and planar embeddings
Euler's formula: v+f=e+2.
Proof: removing an edge from a cycle removes a face (and keeps connected)
Euler’s formula consequence: e <3v—6
Use to show that K5 is not planar
Modify slightly to show that K3 3 is not planar

Coloring Planar Graphs
Can color with 6 colors! Easy proof — just needs existence of deg < 5 vertex
Can color with 5 colors! Argue about intersection of paths in the plane
Can color with 4 colors! Proof.. well, it's possible

Graph connectivity
Trees: few edges, but fragile (easily disconnected)
Complete: very robust, but many, many edges

Hypercube: very connected with modest edges
Beautiful structure — bits, bits, bits!
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Concept Check: Graphs 2

Does v+ f = e-+2 apply to all planar graphs?

Does adding an edge to a connected planar graph increase number of faces?
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Lecture 7 (Modular Arithmetic): Summary

Modular Arithmetic: x =y (mod N)
if x — y = kN for some integer k
.. or (equiv) if x = y 4+ kN for some integer k

Fora=b (mod N) and c=d (mod N):
ac=bd (mod N) and (a+c¢) =(b+d) (mod N).

Division?
Multiply by multiplicative inverse
a (mod N) has multiplicative inverse iff ged(a, N) = 1

Euclid’s Algorithm:

Based on fact that gcd(x, y) = ged(y, x mod y)
Very fast!

Algorithm invented around 300 B.C. is still in use today! Cool.
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Concept Check: Modular Arithmetic

True or False: ged(x,y) = ged(x, [ £])?

For how many a < {0,...,60} does ax =5 (mod 61) have a unique solution?
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Lecture 8 (Euclid, FLT, CRT): Summary

Extended Euclid: Find a,b where ax + by = gcd(x,y)
Idea: compute a, b recursively (euclid), or iteratively
Inverse: ax+ by = ax = ged(x,y) (mod y)

If ged(x,y) =1, we have ax=1 (mod y)
—a=x"" (mod y)

Fundamental Theorem of Arithmetic: Unique prime factorization of any n
Claim: if p|nand n= xy, p|x of p|x.
Proof relies on Extended Euclid GCD Theorem
Fundamental Theorem follows using induction + contradiction. Chinese

Remainder Theorem:
If ged(n,m) =1 then x =a (mod n), x =b (mod m) unique sol.
Proof: Find u=1 (mod n), u=0 (mod m),
and v=0 (mod n), v=1 (mod m).
Then: x = au+bv =a (mod n)

Fermat: For prime p, a°~' =1 (mod p)

Proof Idea: f(x) = a-x (mod p) is bijectionon S={1,...,p—1}.
Multiply domain elts and range elts — cancel and left with just a°~' in range

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 31/39



Concept Check: FLT and CRT

What is 43%1 mod 617

Is there a unique x € {0,1,...,76} with x =6 (mod 7) and x =6 (mod 11)?

What is x in the previous question?
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Lecture 9 (RSA): Summary

Public-Key Cryptography
Basic idea: Asymmetric power of parties and keys (public vs private)
Used for confidentiality (encryption) and integrity (signatures)

Cool and historically important public-key scheme: RSA
Works due to all the things we have been discussing!
Modular arithmetic, Fermat's Little Theorem, Chinese Remainder Theorem, ...
Efficiency: Repeated squaring, small e, CRT for decryption

Some warnings/caveats:
Understanding this math doesn’t make you a cryptography expert
Many real-world problems — modifications made
Always use a robust, well-tested cryptographic library

Modern threats to RSA (and related algorithms)
Quantum computing
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Concept Check: RSA

(A) Can 61 be a modulus used for RSA?

(B) In RSA, can 45 be the encryption exponent e with modulus 777
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Lecture 10 (Polynomials & Secret Sharing): Summary

Two points make a unique line
Existence: Compute solution: m, b.
Unique: Assume two solutions, show they are the same.

d+ 1 points make a unique degree d polynomial.
Existence: Lagrange interpolation
Unique: Assume two solutions, show they are the same.

If you're careful about limiting degree d or making p large enough...
Proofs work for polynomials over GF(p) just like over R
And over GF(p): values from a finite set — all likely

Secret Sharing:

k points on degree k — 1 polynomial is all we need!
Can hand out n points on polynomial as shares.
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Concept Check: Polynomials and Secret Sharing

Which of the following is a good modulus for a secret sharing polynomial?
40, 53, 63, 99

If P(x) has degree 10 and Q(x) has degree 8, what is the maximum number
of x values where P(x) = Q(x)?

In the standard secret sharing scheme, the secret is P(x) for what x?
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Lecture 11 (Error Correcting Codes): Summary

Erasure codes: Communicate n packets with k erasures.
How many packets to send? n+ k
How to encode? With polynomial P(x).
.. of degree? n—1
Recover? Reconstruct P(x) with any n points!

Error Correcting Codes (ECC): Communicate n packets with k errors.
How many packets to send? n+2k
How to encode? With polynomial P(x).
.. of degree? n—1
Recover?
Reconstruct error polynomial, E(x), and P(x)! Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Optimality. Perfection!
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Lecture 12 (Counting 1): Summary

First rule: ny x no x --- x ng

k Samples with replacement from nitems: n*.
Sample without replacement: (nfi'k),

Second rule: when order doesn’t matter divide .. when possible

Sample without replacement, no order: (i) = (n%k'),k‘ “n choose k”

One-to-one rule: equal in number if one-to-one correspondence

Sample with replacement and order doesn’t matter: (“7"")
Distribute kK samples (stars) over n poss. (n— 1 bars group poss..)

Distribute k dollars to n people.
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That’s “all”
Study - but get sleep

Don’t get overly stressed

YOU CAN DO THIS!
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