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Today

Combinatorial Proofs
Proving identities using counting
Binomial Theorem
Pascal’s Triangle and Pascal’s Rule

Brief Midterm Review
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Combinatorial Proofs: Counting for Proving Identities
Theorem: For all n,k ∈ N,

(n
k

)
=
( n

n−k

)
.

Proof? In this case, the algebra is easy... but let’s count instead.

Counting Proof (Sketch):

Question: Given the set of all n-bit strings, how many have k zeros?(
n
k

)
Given the set of all n-bit strings, how many have n−k ones?(

n
n−k

)
These are the same set! Length n: k zeroes ⇐⇒ (n−k) ones.

So (
n
k

)
=

(
n

n−k

)
.

Another view: # ways to choose k from n = # ways to exclude n−k .
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Binomial Coefficients 1

Question: What is (a+b)n? Algebra? Yes.
... But also combinatorics. Counting.

(a+b)2 = (a+b)1(a+b) = (a+b)︸ ︷︷ ︸
all len-1 seq

(a+b)

= (a+b)︸ ︷︷ ︸
all len-1 seq

a+ (a+b)︸ ︷︷ ︸
all len-1 seq

b

= aa+ab+ba+bb︸ ︷︷ ︸
all length-2 sequences

(a+b)3 = (a+b)2(a+b) = (aa+ab+ba+bb)︸ ︷︷ ︸
all length-2 sequences

(a+b)

= (aa+ab+ba+bb)︸ ︷︷ ︸
all length-2 sequences

a+(aa+ab+ba+bb)︸ ︷︷ ︸
all length-2 sequences

b

= aaa+aab+aba+abb+baa+bab+bba+bbb︸ ︷︷ ︸
all length-3 sequences
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Binomial Coefficients 2

(a+b)3 = aaa+aab+aba+abb+baa+bab+bba+bbb︸ ︷︷ ︸
all length-3 sequences

How many terms have 3 a’s? Just one.

How many terms have 2 a’s? Three – and all are a2b

How many terms have 1 a? Three – and all are ab2

General for (a+b)n

All length n sequences of a’s and b’s
How many have exactly k a’s?

(n
k

)
– and all are ak bn−k

So:

(a+b)n =
n

∑
i=0

(
n
k

)
ak bn−k

Great algebraic identity... proved by counting - a combinatorial proof
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Pascal’s Triangle

Construction: Each entry in a triangle is sum of two above it.

0
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·

Looks like... combinations: (0
0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)
Is this true (Pascal’s rule)?

(n+1
k

)
=
(n

k

)
+
( n

k−1

)
.
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Combinatorial Proof: Pascal’s Rule

Theorem: For n,k ∈ N,
(n+1

k

)
=
(n

k

)
+
( n

k−1

)
.

Proof: How many size k subsets of {1, . . . ,n+1}?
(n+1

k

)
How many size k subsets with value n+1? Remaining k −1 from {1, . . . ,n}:(

n
k −1

)
(1)

How many size k subsets without value n+1? All k come from {1, . . . ,n}:(
n
k

)
(2)

Any subset of size k is counted once, in either (1) or (2), so(
n+1

k

)
=

(
n
k

)
+

(
n

k −1

)
.

Sum Rule: Size of union of disjoint sets of objects is sum of set size
Above: With and without value n+1 −→ disjoint.
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Hockey Stick Identity

Theorem: (
n

k +1

)
=

(
n−1

k

)
+

(
n−2

k

)
+ · · ·+

(
k
k

)

In Pascal’s Triangle(0
0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)

General Position

· · ·
(n−4

k

)
· · ·

· · ·
(n−3

k

)
· · ·

· · ·
(n−2

k

)
· · ·

· · ·
(n−1

k

)
· · ·

· · ·
( n

k+1

)
· · ·

Can prove algebraically... but what does it mean for counting?
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Hockey Stick Identity: Combinatorial Proof

Theorem:
(n

k

)
=
(n−1

k−1

)
+ · · ·+

(k−1
k−1

)
.

Proof: Count subsets of {1,2, . . . ,n}.

First way of counting: Subsets of k items from n:
(n

k

)
Second way of counting: What is smallest item in subset?

How many subsets where the smallest item is 1?
Remaining k −1 from 2, . . . ,n (n−1 choices):

(n−1
k−1

)
How many subsets where the smallest item is 2?

Remaining k −1 from 3, . . . ,n (n−2 choices):
(n−2

k−1

)
How many subsets where the smallest item is 3?

Remaining k −1 from 4, . . . ,n (n−3 choices):
(n−3

k−1

)
...
Must leave at least k −1 for remaining elements

⇒ Pattern continues until
(k−1

k−1

)
Conclusion:

(n
k

)
=
(n−1

k−1

)
+ · · ·+

(k−1
k−1

)
.
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Sum of Binomial Coefficients

Theorem:
(n

0

)
+
(n

1

)
+ · · ·+

(n
n

)
= 2n .

Proof: How many subsets of {1, . . . ,n}?

First way of counting: Sequence of n choices to include or exclude:
Element i is in or not in the subset: 2 choices
First rule of counting: 2×2 · · ·×2 = 2n subsets

Second way of counting: Count subsets of each size:
How many subsets of size k?

(n
k

)
Every subset has a specific size (size k disjoint from size k +1)
Counting subsets of all sizes:

(n
0

)
+
(n

1

)
+ · · ·+

(n
n

)
subsets

Conclusion:
(n

n

)
+
( n

n−1

)
+ · · ·+

(n
0

)
= 2n
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Simple Inclusion/Exclusion: Two Sets

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

... adding number of subsets of size 1, 2, 3,. . .
Also reasoned about subsets that contained or didn’t contain an element

... first element, smallest element, ...

Inclusion/Exclusion Rule: For any S and T , |S∪T |= |S|+ |T |− |S∩T | .

S TS T
Count in S =⇒ |S|

S T Count in T =⇒ |T |
Elements in S∩T , like x , are counted twice

S∩T

x

Remove double-counts =⇒ −|S∩T |

|S∪T |= |S|+ |T |− |S∩T |
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Simple Inclusion/Exclusion: Two Set Example

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |
Used to reason about all subsets

... adding number of subsets of size 1, 2, 3,. . .
Also reasoned about subsets that contained or didn’t contain an element

... first element, smallest element, ...

Inclusion/Exclusion Rule: For any S and T , |S∪T |= |S|+ |T |− |S∩T | .

Example: How many 10-digit numbers have 7 as their first or second digit?

S = 10-digit numbers with 7 as first digit. |S|= 109

T = 10-digit numbers with 7 as second digit. |T |= 109

S ∩T = 10-digit numbers with 7 as first and second digit. |S ∩T |= 108

Answer: 10-digit numbers with 7 as first or second digit: S∪T

|S∪T |= |S|+ |T |− |S∩T |= 109 +109 −108 = 1,900,000,000
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Inclusion/Exclusion: Three Sets

A B

C

A B

C

All with duplications: |A∪B∪C|
A and C overlap overcounted, so subtract: −|A∩C|
A and B overlap overcounted, so subtract: −|A∩B|
B and C overlap overcounted, so subtract: −|B∩C|

What about the yellow area?
Added in 3 times (with A, B, and C)
Subtracted out 3 times (each intersection)
Too much!! Need to add back in: +|A∩B∩C|

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

Generalizing: Add in all sets,
subtract out pairwise intersections,
add in 3-way intersections,
subtract out 4-way intersections,
...
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Inclusion/Exclusion: General

|A1 ∪·· ·∪An|= ∑i |Ai |−∑i ,j |Ai ∩Aj |+∑i ,j ,k |Ai ∩Aj ∩Ak | · · ·(−1)n|A1 ∩·· ·An|

Proof Idea: How many times is each element counted?
Element a in m sets: a ∈ Ai1 ∩Ai2 · · ·∩Aim
For each i ≤ m: Included in

(m
i

)
i-way intersections

Total counts for a:
(m

1

)
−
(m

2

)
+
(m

3

)
−
(m

4

)
+ · · ·+(−1)m−1(m

m

)
Binomial Theorem: (x +y)m =

(m
0

)
xm +

(m
1

)
xm−1y +

(m
2

)
xm−2y2 + · · ·

(m
m

)
ym

For x = 1,y =−1:
(x +y)m = (1−1)m = 0
(x −y)m =

(m
0

)
−
(m

1

)
+
(m

2

)
−
(m

3

)
+
(m

4

)
+ · · ·+(−1)m(m

m

)
=⇒

(m
0

)
=
(m

1

)
−
(m

2

)
· · ·+(−1)m−1(m

m

)
=⇒ 1 =

(m
1

)
−
(m

2

)
· · ·+(−1)m−1(m

m

)
Each element counted exactly once!
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Lecture 12 Summary
Combinatorial Proofs: Identity from counting same set in two ways

Basic combinations:
(n

k

)
=
( n

n−k

)
ways to include k = ways to exclude n−k

Binomial Coefficients and Binomial Theorem
Expansion of monomial power is ways of choosing a factors

Pascal’s Triangle and Pascal’s Identity:
(n+1

k

)
=
( n

k−1

)
+
(n

k

)
.

LHS: Count as number of subsets of n+1 items size k .
RHS:

( n
k−1

)
counts subsets of n+1 items with first item.(n

k

)
counts subsets of n+1 items without first item.

Disjoint – so add!
Hockey Stick Identity

Count as subsets, and count as subsets with given smallest element

Inclusion/Exclusion: Two sets of objects
Add number of each subtract intersection of sets
Sum Rule: If intersection is empty, nothing to subtract!

Inclusion/Exclusion: General
Alternate adding/subtracting: Add 1-way, subtract 2-way, add 3-way, ...
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Quick Midterm Review

The Course Until Now...
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Lecture 1 (Propositions and Predicates): Summary

Propositions are statements that are true or false.

Propositional forms use ∧,∨,¬.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: P =⇒ Q ≡ ¬P ∨Q.

Contrapositive: ¬Q =⇒ ¬P (equivalent to P =⇒ Q)

Converse: Q =⇒ P (not equivalent)

Predicates: Statements with variables

Quantifiers: Universal ∀x P(x) and existential ∃y Q(y)

Now can state theorems (provable propositions)! And disprove false ones!

De Morgan’s Laws: “Flip and Distribute negation”
¬(P ∨Q) ⇐⇒ (¬P ∧¬Q)
¬∀x P(x) ⇐⇒ ∃x ¬P(x).
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Concept Check: Propositions

True or False?

(A) P ∨Q ≡ (¬P =⇒ Q)?

True
A version of R =⇒ S ≡ ¬R∨S.

(B) ∃n ∈ N (¬P(n)) ≡ ¬∀n P(n)?

True
If its not always true, it must be false at some point.

(C) ∀n ∈ N
(
Q(n)∨P(n)

)
≡

(
∀n ∈ N Q(n)

)
∨
(
∀n ∈ N P(n)

)
?

False
Q(n) could be true on evens and P(n) could be true on odds.
The left hand side is true, and the right is false.
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Lecture 2 (Proofs): Summary

By Example:
To Prove: (∃x)P(x). Give such an x and show P(x).

Direct Proof:
To Prove: P =⇒ Q. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: P =⇒ Q Assume ¬Q. Prove ¬P.

By Contradiction:
To Prove: P Assume ¬P. Prove False.

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either

√
2 and

√
2 worked.

or
√

2 and
√

2
√

2
worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...
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Concept Check: Proofs

Which type of proof does each describe?

(A) Prove P =⇒ Q using the equivalent ¬Q =⇒ ¬P?

Contraposition
Example: “n2 is odd =⇒ n is odd” ≡ “n is even =⇒ n2 is even”

(B) Prove P =⇒ Q by assuming P and proving Q?

Direct Proof
Example: a|b and a|c =⇒ a|(b−c)

(C) Prove P by showing ¬P =⇒ R∧¬R?

Contradiction
Example:

√
2 is irrational – assume it is rational, reach a contradiction.
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Lecture 3 (Induction): Summary

Basic principle of induction – proving ∀n ∈ N by simple induction

Prove P(0) directly (base case)

Prove that P(k) =⇒ P(k +1) for all k ≥ 0 (inductive step)

What if it doesn’t work? (almost but not quite)

Do we need to change the base case?

Would a stronger theorem (so a stronger induction hypothesis) work?

Would it help to “reach back” farther than just the previous step (just
P(k) isn’t sufficient to prove P(k +1))?

Strong induction lets you use all P(0) through P(k)
Make sure “reaching back farther than the previous step” doesn’t
skip over the base case
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Concept Check: Induction

What are the three fundamental parts of an induction proof?

Base case
Induction hypothesis
Induction step
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Lecture 4 (Stable Matching): Summary

Analysis of cool algorithm with interesting goal: stability.

Stability seems like a good idea – is it possible?

Two-set instance: Yes
One-set instance: No

Can we find a stable matching?

Yes! Propose and Reject algorithm
Basic idea: Over time things get better for candidates, worse for jobs
Eventually reaches a balance

... and we can (and did) prove it always finds a stable matching

Beyond stability – several stable solutions – which is better?
⇒ For jobs? For candidates?
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Concept Check: Stable Matching

What kind of matching does the propose and reject algorithm produce?

Job optimal

What if candidates propose to jobs?

Candidate optimal

True or False: All matchings are job optimal or candidate optimal.

False
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Lecture 5 (Graphs 1): Summary

Graphs:
Definitions, basic properties (degree, path, cycle, tour, ...)
Degree-sum formula (sum of degrees is 2|E |)
Connected: Path between every pair of nodes
Connected Component: Maximal set of connected vertices

Euler tour and condition for existence (even degree vertices)
Necessary: Existence of tour =⇒ connected, even degree
Sufficient: Recursive algorithm for finding an Eulerian tour

Trees:
Definitions – four of them – all equivalent
Equivalence of definitions

⇒ Two proved - others “left as an exercise for the reader”

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 25 / 39



Concept Check: Basic Graphs

Are the following statements true or false?

(A) Removing a degree 1 vertex does change connectivity of graph.

True
No path goes through a degree 1 vertex.

(B) A graph with two odd-degree vertices has an Eulerian tour.

False
All vertices must have even degree to have an Eulerian tour.

(C) Adding an edge anywhere in a tree creates a cycle.

True
This is in fact one of the four equivalent definitions of a tree.
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Lecture 6 (Graphs 2): Summary

Planar graphs and planar embeddings
Euler’s formula: v + f = e+2.

Proof: removing an edge from a cycle removes a face (and keeps connected)
Euler’s formula consequence: e ≤ 3v −6

Use to show that K5 is not planar
Modify slightly to show that K3,3 is not planar

Coloring Planar Graphs
Can color with 6 colors! Easy proof – just needs existence of deg ≤ 5 vertex
Can color with 5 colors! Argue about intersection of paths in the plane
Can color with 4 colors! Proof.. well, it’s possible

Graph connectivity
Trees: few edges, but fragile (easily disconnected)
Complete: very robust, but many, many edges
Hypercube: very connected with modest edges

Beautiful structure – bits, bits, bits!
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Concept Check: Graphs 2

Does v + f = e+2 apply to all planar graphs?

No
It only applies to connected planar graphs.

Does adding an edge to a connected planar graph increase number of faces?

Yes
From Euler’s formula: v doesn’t change, so e increasing means f must too
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Lecture 7 (Modular Arithmetic): Summary

Modular Arithmetic: x ≡ y (mod N)
if x −y = kN for some integer k
.. or (equiv) if x = y +kN for some integer k

For a ≡ b (mod N) and c ≡ d (mod N):
ac ≡ bd (mod N) and (a+c)≡ (b+d) (mod N).

Division?
Multiply by multiplicative inverse
a (mod N) has multiplicative inverse iff gcd(a,N) = 1

Euclid’s Algorithm:
Based on fact that gcd(x ,y) = gcd(y ,x mod y)
Very fast!
Algorithm invented around 300 B.C. is still in use today! Cool.
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Concept Check: Modular Arithmetic

True or False: gcd(x ,y) = gcd(x ,⌊ y
x ⌋)?

False
Use remainder instead of quotient: gcd(x ,y) = gcd(x ,y mod x)

For how many a ∈ {0, . . . ,60} does ax ≡ 5 (mod 61) have a unique solution?

60 – all but a = 0, where there is no solution
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Lecture 8 (Euclid, FLT, CRT): Summary

Extended Euclid: Find a,b where ax +by = gcd(x ,y)
Idea: compute a,b recursively (euclid), or iteratively
Inverse: ax +by ≡ ax ≡ gcd(x ,y) (mod y)
If gcd(x ,y) = 1, we have ax ≡ 1 (mod y)
−→ a ≡ x−1 (mod y)

Fundamental Theorem of Arithmetic: Unique prime factorization of any n
Claim: if p|n and n = xy , p|x of p|x .

Proof relies on Extended Euclid GCD Theorem
Fundamental Theorem follows using induction + contradiction. Chinese

Remainder Theorem:
If gcd(n,m) = 1 then x = a (mod n), x = b (mod m) unique sol.
Proof: Find u = 1 (mod n), u = 0 (mod m),

and v = 0 (mod n), v = 1 (mod m).
Then: x = au+bv = a (mod n)

Fermat: For prime p, ap−1 ≡ 1 (mod p)
Proof Idea: f (x) = a ·x (mod p) is bijection on S = {1, . . . ,p−1}.
Multiply domain elts and range elts – cancel and left with just ap−1 in range
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Concept Check: FLT and CRT

What is 4361 mod 61?

43
Using FLT, ap−1 ≡ 1 (mod p), we have 4360 ·43 ≡ 1 ·43 ≡ 43 (mod 43).

Is there a unique x ∈ {0,1, . . . ,76} with x ≡ 6 (mod 7) and x ≡ 6 (mod 11)?

Yes – this is the main point of the Chinese Remainder Theorem

What is x in the previous question?

6
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Lecture 9 (RSA): Summary

Public-Key Cryptography
Basic idea: Asymmetric power of parties and keys (public vs private)
Used for confidentiality (encryption) and integrity (signatures)

Cool and historically important public-key scheme: RSA
Works due to all the things we have been discussing!

Modular arithmetic, Fermat’s Little Theorem, Chinese Remainder Theorem, ...
Efficiency: Repeated squaring, small e, CRT for decryption

Some warnings/caveats:
Understanding this math doesn’t make you a cryptography expert

Many real-world problems – modifications made
Always use a robust, well-tested cryptographic library

Modern threats to RSA (and related algorithms)
Quantum computing
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Concept Check: RSA

(A) Can 61 be a modulus used for RSA?

No
61 is prime, and the RSA modulus must be the product of two primes

(B) In RSA, can 45 be the encryption exponent e with modulus 77?

No
The exponent must be relatively prime to (p−1)(q−1) which is 60, and
gcd(45,60) = 15.
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Lecture 10 (Polynomials & Secret Sharing): Summary

Two points make a unique line
Existence: Compute solution: m,b.
Unique: Assume two solutions, show they are the same.

d +1 points make a unique degree d polynomial.
Existence: Lagrange interpolation
Unique: Assume two solutions, show they are the same.

If you’re careful about limiting degree d or making p large enough...
Proofs work for polynomials over GF (p) just like over R
And over GF (p): values from a finite set – all likely

Secret Sharing:
k points on degree k −1 polynomial is all we need!
Can hand out n points on polynomial as shares.
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Concept Check: Polynomials and Secret Sharing

Which of the following is a good modulus for a secret sharing polynomial?
40, 53, 63, 99

53 – the modulus must be prime

If P(x) has degree 10 and Q(x) has degree 8, what is the maximum number
of x values where P(x) = Q(x)?

10 – P(x)−Q(x) has degree 10, which has at most 10 roots

In the standard secret sharing scheme, the secret is P(x) for what x?

x = 0
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Lecture 11 (Error Correcting Codes): Summary

Erasure codes: Communicate n packets with k erasures.
How many packets to send? n+k
How to encode? With polynomial P(x).

... of degree? n−1
Recover? Reconstruct P(x) with any n points!

Error Correcting Codes (ECC): Communicate n packets with k errors.
How many packets to send? n+2k
How to encode? With polynomial P(x).

... of degree? n−1
Recover?

Reconstruct error polynomial, E(x), and P(x)! Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Optimality. Perfection!
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Lecture 12 (Counting 1): Summary

First rule: n1 ×n2 ×·· ·×nk

k Samples with replacement from n items: nk .
Sample without replacement: n!

(n−k)!

Second rule: when order doesn’t matter divide .. when possible

Sample without replacement, no order:
(n

k

)
= n!

(n−k)!k ! . “n choose k ”

One-to-one rule: equal in number if one-to-one correspondence

Sample with replacement and order doesn’t matter:
(k+n−1

n−1

)
Distribute k samples (stars) over n poss. (n−1 bars group poss..)
Distribute k dollars to n people.
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Midterm

That’s “all”

Study - but get sleep

Don’t get overly stressed

YOU CAN DO THIS!
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