Computability

CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 15

Ref: Note 12

Uncomputable Functions

From last time - are these countable or uncountable?

- (A) Set of all predicates?
- (B) Set of all programs?

So: No bijection possible between programs and predicates Some predicates have no program to compute them (In fact: Uncountably many predicates have no program!)

Last Lecture: Uncomputable predicates (functions) exist

This Lecture: Do *interesting/practical* functions exist with no program that can compute them?

We'll see the answer is Yes!

A Deep Problem: Self Reference

From Lecture 1!

Is this a proposition? "This statement is false."

If it's false then it's true...

if it's true it's false... Liar's paradox

Russell's Paradox:

Does the set of all sets which do not contain themselves contain itself?

R = set of all sets that are not members of themselves Math-y: $R = \{x | x \notin x\}$ $R \in R$? Then $R \notin R$ $R \notin R$? Then $R \in R$

Important question: Were mind-altering substances involved?

Issue confounding both Liar's Paradox and Russell's Paradox: Self-reference...

An Interesting/Practical Problem

Problem: Write a program that analyzes an input program P to determine if it halts on some program input x (or if it goes into an infinite loop).

Wait... a program that takes a program as input? Is that a thing? Of course: That's what a compiler is! That's what a static analysis tool is!

Specifically, I want the following function:

HALT(P,x): P is a program, x is an input to P Returns "Yes" if P halts when run on x "No" if P loops forever when run on x

How do we provide a program as input to a program?

Seems weird at first, but it's really not.... a program is just a string of bits Bits are bits – they have no "meaning" until we give them meaning One byte: 01000001

Is it a number? Could be... could represent 65 Is it a character? Could be... could be ASCII character 'A' Is it code? could be... Intel 8080 instruction "MOV B, C"

Implementing HALT

HALT(P, x): P is a program, x is an input to PReturns "Yes" if P halts when run on x"No" if P loops forever when run on x

Solution: Just run the program! - in pseudo-Python....

```
Use Python eval function to evaluate P(x)
if P(x) halts:
return "Yes"
else:
return "No"
```

Correct? Incorrect? Maybe?

Incorrect! If P(x) loops forever, never get to the if...

Run for a million steps? Maybe it would halt in 2 million.... Run for a day? Maybe it would halt in 2 days....

Bottom line: Can't ever stop and say "that was enough"

No Program Exists for HALT – Part 1

Theorem: There is no program that correctly implements HALT.

Proof: Assume for the sake of contradiction that we have a program HALT(P, x) that always gives the right answer.

Use *HALT* to define a new function/program:

Turing(P):

- 1. If HALT(P,P) ="Yes": Go into an infinite loop
- 2. Else: halt immediately

Possible? Yes: *HALT* exists by assumption – string of bits defines *HALT* Turing exists? It's above – just more bits

Recap to now:

Assume *HALT* function/program exists – it's a string of bits (a file?) Can add a new function to program, Turing – just more bits

Have bits - data - that is full implementation of Turing

Can do anything with those bits that we can do with any other data *... including passing those bits as data to a program!*

No Program Exists for HALT – Part 2

Turing(P):

- 1. If HALT(P,P) ="Yes": Go into an infinite loop
- 2. Else: halt immediately

Question: Does Turing(Turing) halt?

Yes?

Turing(Turing) calls HALT(Turing, Turing) which returns "Yes"

 \implies Turing(Turing) goes into an infinite loop and doesn't halt.

No?

Turing(Turing) calls HALT(Turing, Turing) which returns "No" \implies Turing(Turing) halts

So if *HALT* works, then ... Turing(Turing) halts \implies Turing(Turing) doesn't halt Turing(Turing) doesn't halt \implies Turing(Turing) halts

Impossible! Contradiction! No program can correctly implement HALT.

Confused? That's normal. Questions?

Another View: Diagonalization

- Fact 1: Any program is a fixed length string.
- Fact 2: Fixed length strings are enumerable.
- Fact 3: Program inputs are strings programs halt or not on any input

Enumeration of programs (in rows below) – inputs as columns – Halt or Loop:

	P_1	P_2	P_3	•••
P_1	Н	Н	L	•••
P_2	L	L	Н	
P_3	L	Н	Н	
÷	÷	÷	÷	·

Create "diagonal program" – flips H and L Turing is the diagonal program

Turing is a program, so must be in the enumeration of all programs ... but it halts/loops differently than any program for at least 1 input ... so it's different from any program on the list Contradiction!

So Turing can't be a program....

Take a Breather...

Question: What are programs?

- (A) Instructions
- (B) Text
- (C) Binary String
- (D) They run on computers

A Technical Break For Some History

Question: "Turing"??? What's that? Who is that?

This proof was invented by Alan Turing in 1937

"On Computable Numbers, with an Application to the Entscheidungsproblem" The *what*?

David Hilbert (1862–1943): Mathematician and Philosopher
Famous for posing challenge problems – 23 famous problems in 1900 *Similar: Seven "millennium problems" from the Clay Institute in 2000*Hilbert posed the Entscheidungsproblem in 1928
Asks if a process/algorithm exists to say whether a statement is valid
1936: Turing (and Alonzo Church): No

What's an algorithm? What's a computer? Can computation be mechanized? All non-obvious in 1928

Alan Turing: Father of Computer Science Defined abstract computing machine – now called a Turing Machine Designed machines that broke codes in World War II Talked about artificial intelligence and a test now called the "Turing Test" Namesake of the top prize in Computer Science: The Turing Award Tragic life and victim of the time in which he lived... Movie: *The Imitation Game*

Turing Machines

How does someone envision a programmable "computing machine"?

A "Turing Machine" (TM):

The machine definition (Finite State Control) is an algorithm

A Universal Turing Machine's algorithm simulates another TM Input (on tape) is the encoding of a TM (a program) Halting problem: Ask if input TM halts on given input

Reductions from HALT

A reduction from problem *A* to problem *B* uses a solution to *B* to solve *A* Example: Reduce "compute multiplicative inverse" to "compute Ext-GCD"

Problem: Write a program analyzer to determine if P(x) outputs "Hello world" Call this problem HW-CHECK(P, x)

Idea: Let's reduce HALT to HW-CHECK

Program: HALT(P,x)Transform P to P': Remove existing "print" statements Add print "Hello world" at end (at program termination) Call HW-CHECK(P',x) Return result

By construction, P'(x) prints "Hello world" if and only if *P* halts on *x* So if HW-CHECK works correctly, then this solves HALT.

But no program can solve HALT! Contradiction!

 \implies No program can solve HW-CHECK correctly.

A reduction from problem *A* to problem *B* uses a solution to *B* to solve *A* Example: Reduce "compute multiplicative inverse" to "compute Ext-GCD"

Notation: We write $A \le B$ to say there is a reduction from A to B *Complication:* There are different kinds of reductions... not important here

Theorem: If $A \leq B$ and A is uncomputable, then B is uncomputable.

Proof idea: Assume (for contradiction) solution to *B* exists. Use reduction along with that solution to solve *A*. But that's impossible....

On the previous slide: Showed $HALT \leq HW$ -CHECK We know HALT is uncomputable \implies HW-CHECK is uncomputable In Theory of Computation, predicates are often called "decision problems" An uncomputable decision problem is "undecidable"

Undecidable problems about programs:

Given program P and input x, does P halt when run on x? Given program P and input x, does P print "hello world" when run on x? Given program P and input x, does P execute "line n" when run on x? Given program P and input x, does P access an array out of bounds?

All proofs are similar to $HALT \leq HW$ -CHECK reduction given earlier

Rice's Theorem: Deciding if *any* non-trivial property is met during the execution of program *P* on input *x* is undecidable.

"Static Analysis" tools check programs for bugs, security vulnerabilities, etc. Rice's Theorem says making a perfect static analysis tool is impossible!

Undecidable Problems 2

Problems that aren't (or don't seem like!) analyzing programs.

Post Correspondence Problem

Given "domino" types with labels, unlimited copies of each Can copies be lined up to read same top/bottom?

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{ca}{a}\right], \left[\frac{a}{ab}\right], \left[\frac{abc}{c}\right] \right\} \implies \left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

Solving Diophantine Equations

Algorithms exist to approximate polynomial equations over \mathbb{R} Example: Are there integer solutions to $x^n + y^n = 5$?

Conway's "Game of Life" (cellular automaton – pattern evolution) Grid of locations with evolving state – based of neighbors Stephen Wolfram's book "A New Kind of Science"

Billiard Ball Simulation

Given balls in an area with perfectly elastic collisions Does a ball go in a pocket?

Back To Logic

Logic: Start with axioms, derive other propositions

Gödel:

Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven).

Proof idea:

Formal system F: axioms, rules of inference, ... Consider S(F) = "This statement is not provable in F" Provable (that's it's not provable)? Inconsistent Not provable? Incomplete

Can prove using undecidability of HALT too! (see notes)

Concrete example:

Continuum hypothesis: "no cardinality between reals and naturals" Continuum hypothesis not disprovable in ZFC (Gödel 1940) Continuum hypothesis not provable (Cohen 1963) The problem with self-reference Liar's Paradox, Russell's Paradox, ...

Uncomputable functions Programs as data The halting problem Proof of undecidability Diagonalization view of the proof

Some History Alan Turing David Hilbert

Reductions: Solving one problem with another Undecidability of basic program behavior HALT reduction to "prints hello world"

Some additional uncomputable functions

Gödel's Incompleteness Theorem

Next up? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total. Divide.

It might get a little more complicated than that...

Have a good weekend!