
Computability

CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 15

Ref: Note 12

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 1 / 18

Uncomputable Functions

From last time - are these countable or uncountable?

(A) Set of all predicates?

Uncountable

(B) Set of all programs?

Countable

So: No bijection possible between programs and predicates
=⇒ Some predicates have no program to compute them

(In fact: Uncountably many predicates have no program!)

Last Lecture: Uncomputable predicates (functions) exist

This Lecture: Do interesting/practical functions exist with no program that
can compute them?

We’ll see the answer is Yes!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 2 / 18

A Deep Problem: Self Reference
From Lecture 1!

Is this a proposition? “This statement is false.”

If it’s false then it’s true...
if it’s true it’s false...

Liar’s paradox

Russell’s Paradox:
Does the set of all sets which do not contain themselves contain itself?

R = set of all sets that are not members of themselves
Math-y: R = {x |x ̸∈ x}
R ∈ R? Then R ̸∈ R
R ̸∈ R? Then R ∈ R

Important question: Were mind-altering substances involved?

Issue confounding both Liar’s Paradox and Russell’s Paradox:
Self-reference...

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 3 / 18

An Interesting/Practical Problem
Problem: Write a program that analyzes an input program P to determine if it
halts on some program input x (or if it goes into an infinite loop).

Wait... a program that takes a program as input? Is that a thing?
Of course: That’s what a compiler is!
That’s what a static analysis tool is!

Specifically, I want the following function:

HALT (P,x): P is a program, x is an input to P
Returns “Yes” if P halts when run on x

“No” if P loops forever when run on x

How do we provide a program as input to a program?
Seems weird at first, but it’s really not.... a program is just a string of bits
Bits are bits – they have no “meaning” until we give them meaning

One byte: 01000001
Is it a number? Could be... could represent 65
Is it a character? Could be... could be ASCII character ‘A’
Is it code? could be... Intel 8080 instruction “MOV B,C”

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 4 / 18

Implementing HALT
HALT (P,x): P is a program, x is an input to P

Returns “Yes” if P halts when run on x
“No” if P loops forever when run on x

Solution: Just run the program! – in pseudo-Python....

Use Python eval function to evaluate P(x)
if P(x) halts:
return "Yes"

else:
return "No"

Correct? Incorrect? Maybe?

Incorrect! If P(x) loops forever, never get to the if...
Run for a million steps? Maybe it would halt in 2 million....
Run for a day? Maybe it would halt in 2 days....

Bottom line: Can’t ever stop and say “that was enough”
UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 5 / 18

No Program Exists for HALT – Part 1

Theorem: There is no program that correctly implements HALT .

Proof: Assume for the sake of contradiction that we have a program
HALT (P,x) that always gives the right answer.

Use HALT to define a new function/program:
Turing(P):

1. If HALT(P,P) =“Yes”: Go into an infinite loop
2. Else: halt immediately

Possible? Yes: HALT exists by assumption – string of bits defines HALT
Turing exists? It’s above – just more bits

Recap to now:
Assume HALT function/program exists – it’s a string of bits (a file?)
Can add a new function to program, Turing – just more bits

Have bits – data – that is full implementation of Turing

Can do anything with those bits that we can do with any other data
... including passing those bits as data to a program!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 6 / 18

No Program Exists for HALT – Part 2

Turing(P):
1. If HALT(P,P) =“Yes”: Go into an infinite loop
2. Else: halt immediately

Question: Does Turing(Turing) halt?

Yes?
Turing(Turing) calls HALT (Turing, Turing) which returns “Yes”
=⇒ Turing(Turing) goes into an infinite loop and doesn’t halt.

No?
Turing(Turing) calls HALT (Turing, Turing) which returns “No”
=⇒ Turing(Turing) halts

So if HALT works, then ...
Turing(Turing) halts =⇒ Turing(Turing) doesn’t halt
Turing(Turing) doesn’t halt =⇒ Turing(Turing) halts

Impossible! Contradiction! No program can correctly implement HALT .

Confused? That’s normal. Questions?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 7 / 18

Another View: Diagonalization
Fact 1: Any program is a fixed length string.
Fact 2: Fixed length strings are enumerable.
Fact 3: Program inputs are strings – programs halt or not on any input

Enumeration of programs (in rows below) – inputs as columns – Halt or Loop:
P1 P2 P3 · · ·

P1 H H L · · ·
P2 L L H · · ·
P3 L H H · · ·
...

...
...

...
. . .

Create “diagonal program” – flips H and L
Turing is the diagonal program

Turing is a program, so must be in the enumeration of all programs
... but it halts/loops differently than any program for at least 1 input

... so it’s different from any program on the list
Contradiction!

So Turing can’t be a program....
UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 8 / 18

Take a Breather...

Question: What are programs?

(A) Instructions

(B) Text

(C) Binary String

(D) They run on computers

Answer: All are correct.

The only that that makes programs “special” is something that interprets
instructions as actions to perform.

Hardware (CPU) or software (interpreter)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 9 / 18

A Technical Break For Some History
Question: “Turing”??? What’s that? Who is that?

This proof was invented by Alan Turing in 1937
“On Computable Numbers, with an Application to the Entscheidungsproblem”
The what?

David Hilbert (1862–1943): Mathematician and Philosopher
Famous for posing challenge problems – 23 famous problems in 1900

Similar: Seven “millennium problems” from the Clay Institute in 2000
Hilbert posed the Entscheidungsproblem in 1928
Asks if a process/algorithm exists to say whether a statement is valid

1936: Turing (and Alonzo Church): No

What’s an algorithm? What’s a computer? Can computation be mechanized?
All non-obvious in 1928

Alan Turing: Father of Computer Science
Defined abstract computing machine – now called a Turing Machine
Designed machines that broke codes in World War II
Talked about artificial intelligence and a test now called the “Turing Test”
Namesake of the top prize in Computer Science: The Turing Award
Tragic life and victim of the time in which he lived... Movie: The Imitation Game

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 10 / 18

Turing Machines

How does someone envision a programmable “computing machine”?

A “Turing Machine” (TM):

s2s1 snsk

Finite
State

Control

R/W Head
Moves

Left and Right
Read Write
Tape Head

Tape

The machine definition (Finite State Control) is an algorithm

A Universal Turing Machine’s algorithm simulates another TM
Input (on tape) is the encoding of a TM (a program)
Halting problem: Ask if input TM halts on given input

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 11 / 18

Reductions from HALT
A reduction from problem A to problem B uses a solution to B to solve A

Example: Reduce “compute multiplicative inverse” to “compute Ext-GCD”

Problem: Write a program analyzer to determine if P(x) outputs “Hello world”
Call this problem HW-CHECK(P,x)

Idea: Let’s reduce HALT to HW-CHECK

Program:
HALT (P,x)

Transform P to P ′:
Remove existing “print” statements
Add print “Hello world” at end (at program termination)

Call HW-CHECK(P ′,x)
Return result

By construction, P ′(x) prints “Hello world” if and only if P halts on x
So if HW-CHECK works correctly, then this solves HALT.

But no program can solve HALT! Contradiction!
=⇒ No program can solve HW-CHECK correctly.

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 12 / 18

Reductions

A reduction from problem A to problem B uses a solution to B to solve A
Example: Reduce “compute multiplicative inverse” to “compute Ext-GCD”

Notation: We write A ≤ B to say there is a reduction from A to B

Complication: There are different kinds of reductions... not important here

Theorem: If A ≤ B and A is uncomputable, then B is uncomputable.

Proof idea: Assume (for contradiction) solution to B exists. Use reduction
along with that solution to solve A. But that’s impossible....

On the previous slide:
Showed HALT ≤ HW-CHECK
We know HALT is uncomputable
=⇒ HW-CHECK is uncomputable

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 13 / 18

Undecidable Problems 1

In Theory of Computation, predicates are often called “decision problems”
An uncomputable decision problem is “undecidable”

Undecidable problems about programs:
Given program P and input x , does P halt when run on x?
Given program P and input x , does P print “hello world” when run on x?
Given program P and input x , does P execute “line n” when run on x?
Given program P and input x , does P access an array out of bounds?

All proofs are similar to HALT ≤ HW-CHECK reduction given earlier

Rice’s Theorem: Deciding if any non-trivial property is met during the
execution of program P on input x is undecidable.

“Static Analysis” tools check programs for bugs, security vulnerabilities, etc.
Rice’s Theorem says making a perfect static analysis tool is impossible!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 14 / 18

Undecidable Problems 2
Problems that aren’t (or don’t seem like!) analyzing programs.

Post Correspondence Problem
Given “domino” types with labels, unlimited copies of each
Can copies be lined up to read same top/bottom?{[

b

ca

]
,

[
ca

a

]
,

[
a

ab

]
,

[
abc

c

]}
=⇒

[
a

ab

][
b

ca

][
ca

a

][
a

ab

][
abc

c

]

Solving Diophantine Equations
Algorithms exist to approximate polynomial equations over R
Example: Are there integer solutions to xn +yn = 5?

Conway’s “Game of Life” (cellular automaton – pattern evolution)
Grid of locations with evolving state – based of neighbors
Stephen Wolfram’s book “A New Kind of Science”

Billiard Ball Simulation
Given balls in an area with perfectly elastic collisions
Does a ball go in a pocket?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 15 / 18

Back To Logic
Logic: Start with axioms, derive other propositions

Gödel:
Any set of axioms is either

inconsistent (can prove false statements) or
incomplete (true statements cannot be proven).

Proof idea:
Formal system F : axioms, rules of inference, ...
Consider S(F) = “This statement is not provable in F ”

Provable (that’s it’s not provable)? Inconsistent
Not provable? Incomplete

Can prove using undecidability of HALT too! (see notes)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals”
Continuum hypothesis not disprovable in ZFC (Gödel 1940)
Continuum hypothesis not provable (Cohen 1963)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 16 / 18

Lecture 15 Summary

The problem with self-reference
Liar’s Paradox, Russell’s Paradox, ...

Uncomputable functions
Programs as data
The halting problem

Proof of undecidability
Diagonalization view of the proof

Some History
Alan Turing
David Hilbert

Reductions: Solving one problem with another
Undecidability of basic program behavior
HALT reduction to “prints hello world”

Some additional uncomputable functions

Gödel’s Incompleteness Theorem

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 17 / 18

Starting Next Week: Probability

Next up? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

It might get a little more complicated than that...

Have a good weekend!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 18 / 18

