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Today

Extending the basic Euclid GCD algorithm
Computing additional useful values along the way
Using these values to find multiplicative inverses
Other uses of Euclid: Fundamental Theorem of Arithmetic

Chinese Remainder Theorem
Mapping from one modulus to two (or several)
Use in speeding up computations with composite moduli

Fermat’s Little Theorem
Powers with a prime modulus
A few tricks enabled by Fermat’s Little Theorem
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Euclid’s GCD Algorithm – Recap

def euclid(x, y):
if y == 0:

return x

return euclid(y, x % y)

Theorem: euclid(x,y) correctly computes gcd(x ,y).

Run time: When x ≥ y , euclid takes at most 2 log2 x steps
⇒ This is linear in the number of bits of x

(That’s fast!)

Can quickly tell if there is a multiplicative inverse for x mod m

Next Problem: So how do we compute the inverse?
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Extended GCD

Euclid’s Extended GCD Theorem: For any x ,y ∈ Z, there exist a,b ∈ Z such
that ax +by = d where d = gcd(x ,y).

Just about existence – we’ll talk about computing a and b later!

Re-stated: “We can make d out of sum of multiples of x and y .”

Relation to multiplicative inverse of x modulo m?

We have gcd(x ,m) = 1 (otherwise no inverse!), so there are a,b ∈ Z with
ax +bm = 1 =⇒ bm = 1−ax =⇒ ax ≡ 1 (mod m)

So a is the multiplicative inverse of x (mod m)!

Example: For x = 12 and m = 35, we have gcd(12,35) = 1, so inverse exists.
Values a = 3 and b =−1, since 3 ·12+(−1) ·35 = 1.
⇒ Multiplicative inverse of 12 (mod 35) is a, or 3.

Check: 3 ·12 = 36 and 36 ≡ 1 (mod 35).
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Pulling Multiples of x and y Out of GCD Computation

euclid(35,12)
euclid(12, 11) ;; euclid(12, 35%12)
euclid(11, 1) ;; euclid(11, 12%11)

euclid(1,0)
1

How did euclid get 11 from 35 and 12? 11 = 35 mod 12
Another view of this operation: 35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11 = 12− (1)(35− (2)12) = (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... collect multiples of 12 and 35...
Finally: a = 3 and b =−1.
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Extended GCD Algorithm

def extgcd(x, y):
if y == 0:

return (x, 1, 0)

(d, a, b) = extgcd(y, x % y)
return (d, b, a - b*(x // y)) # Note: // is integer division

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .

Example:

extgcd(35,12)
extgcd(12, 11)
extgcd(11, 1)
extgcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12
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Extended GCD Algorithm: Correctness

def extgcd(x, y):
if y == 0:

return (x, 1, 0)

(d, a, b) = extgcd(y, x % y)
return (d, b, a - b*(x // y)) # Note: // is integer division

Theorem: extgcd(x,y returns (d ,a,b), where d = gcd(a,b) and
d = ax +by .

Proof: Computation of d is exactly as before, so d = gcd(a,b). We prove the
remaining property by (strong) induction on y .

Base case (y = 0): extgcd(x,0) returns (x,1,0), we know x = d and
1 ·x +0 ·0 = x ✓
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Extended GCD Algorithm: Correctness continued

Induction Hypothesis: Assume that for all x ′ ≥ y ′ and y ′ < y , extgcd(x ′,y ′)
returns (d ,a,b) with d = a ·x ′+b ·y ′.
Induction Step: We prove that at y , extgcd(x,y) returns (d ,A,B) with
d = A ·x +B ·y .
Makes a recursive call for extgcd(y ,x mod y). Since (x mod y)< y the
induction hypothesis states that this returns (d ,a,b) with
a ·y +b · (x mod y) = d .

Given this value from the recursive call, extgcd returns (d ,A,B) calculated
as A = b and B = a−b · ⌊ x

y ⌋ (from the algorithm).

A ·x +B ·y = b ·x +(a−b · ⌊ x
y ⌋)y

= b ·x +a ·y −b⌊ x
y ⌋y

= a ·y +b · (x −⌊ x
y ⌋y)

= a ·y +b · (x mod y)

This last formula matches the induction hypothesis, so is equal to d .
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Non-Recursive Hand Calculation Method

Example for 7 and 60 — note gcd(7,60) = 1

7(0) + 60(1) = 60 (1)
7(1) + 60(0) = 7 (2)

Idea: subtract largest multiple of the second one you can keeping RHS smaller

That multiple is ⌊ 60
7 ⌋= 8

7(0) + 60(1) = 60 (1)
- 7(8) + 60(0) = 56 (2 multiple)

7(-8) + 60(1) = 4 (3)

Do it again with (2) and (3) [multiple is ⌊ 7
4 ⌋= 1

7(1) + 60(0) = 7 (2)
- 7(-8) + 60(1) = 4 (3 multiple)

7(9) + 60(-1) = 3 (4)
And again....

7(-8) + 60(1) = 4 (3)
- 7(9) + 60(-1) = 3 (4)

7(-17) + 60(2) = 1

Multiplicative inverse of 7 (mod 60) is −17 ≡ 43 (mod 60)
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Wrap-up of Computing Multiplicative Inverses

Conclusion: Can find multiplicative inverses with n-bit modulus in O(n) time!

Very different from grade school: try 1, try 2, try 3... optimized: 2n/2 time.

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Soon we’ll see cryptography that uses very large numbers
Example: Numbers with 1024 bits
Euclid: At most 2048 divisions to find multiplicative inverse
Grade School: 1000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000 divisions

This kind of cryptography is impossible without an algorithm like Euclid’s.
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Fundamental Theorem of Arithmetic

Euclid’s Extended GCD Theorem is useful for things beyond computation.

Theorem: Every natural number can be written as the product of primes.

Proof: Uses strong induction – existence of product of primes:
Case 1: n is prime. Done.
Case 2: n is not prime, so can be written as n = a ·b. By IH,

both a and b can be written as the product of primes.

Theorem: The prime factorization of n is unique up to reordering.

Proof idea: We use Euclid’s Extended GCD Theorem!

Fundamental Theorem of Arithmetic: Every natural number can be written as
a unique (up to reordering) product of primes.
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Euclid For Proofs About Shared Factors

Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea (restatement): x doesn’t share factors with y so it must divide z.

Euclid: There exists a,b ∈ Z such that 1 = ax +by =⇒ z = axz +byz.

Observe: x |axz (obviously) and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz, and since axz +byz = z we have x |z.

So to prove Fundamental Theorem of Arithmetic:
Proof by contradiction: Assume two factorizations p1 · · ·pk and q1 · · ·qℓ

Induction: p1 divides both (same number).
Using claim: p1 divides q1 ·qℓ−1 or qℓ.

Conclusion: p1 = qi for some i .
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Values Modulo Product of Two Primes

x x mod 3 x mod 5
0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4

10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Table shows x from 0 to 14 – so x (mod 15)

Any x with x ≡ 1 (mod 3) and x ≡ 4 (mod 5)?
Yes! x = 4

Any x with x ≡ 2 (mod 3) and x ≡ 3 (mod 5)?
Yes! x = 8

x any a,b: x ≡ a (mod 3) and x ≡ b (mod 5)?
Yes! Check all – or prove a general theorem!
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Chinese Remainder Theorem (2 modulus version)

Theorem: For m,n with gcd(m,n) = 1, and any a,b, there is exactly one
x ∈ {0,1, . . . ,mn−1} with x ≡ a (mod m) and x ≡ b (mod n).

Note: Previous table had m = 3, n = 5, two primes. The requirement isn’t so
strict: m and n only need to be relatively prime. (Example on next slide...)

Proof: First consider existence of a solution.
gcd(n,m) = 1 so compute s = n−1 (mod m), and consider integer u = s ·n

u mod m = 1 u mod n = 0
Similarly, compute t = m−1 (mod n), and consider v = t ·m

v mod n = 1 v mod m = 0
Now compute x = (a ·u+b ·v) mod mn

Consider mod m: x ≡ a ·u+b ·v ≡ a ·1+b ·0 ≡ a (mod m)
Consider mod n: x ≡ a ·u+b ·v ≡ a ·0+b ·1 ≡ b (mod n)

Unique: For any x ∈ {0,1, . . . ,mn−1} compute a = x mod m and b = x mod n
Can map x 7→ (a,b) and (a,b) 7→ x
⇒ Mapping is a bijection (one-to-one) so solution is unique.
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Using the Chinese Remainder Theorem

Proof that solution x exists was constructive, so can use it as to compute

Ex: Let’s find x (mod 1155) with x ≡ 17 (mod 33) and x ≡ 14 (mod 35)
So n = 33, m = 35, nm = 1155, a = 17, and b = 14
⇒ Note! n and m are not prime – but are relatively prime!
We typically use prime moduli, but this is not required!

Compute s = n−1 (mod m) = 33−1 (mod 35) This is 17
Computed using extgcd: Check 33 ·17 = 561 = 16 ·35+1
u = s ·n = 17 ·35 = 595

Compute t = m−1 (mod n) = 35−1 (mod 33) This is 17 (coincidence!)
v = t ·m = 17 ·33 = 561

Finally, compute a ·u+b ·v = 17 ·595+14 ·561 = 17696
Then reduce: x = 17969 mod 1155 = 644

Did it really work?
644 mod 33 = 17 (since 644 = 19 ·33+17)
644 mod 35 = 14 (since 644 = 18 ·35+14)
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Chinese Remainder Theorem: Extension and Uses
Extension

No need to restrict to just two moduli

Use m1,m2, . . . ,mk that have gcd(mi ,mj ) = 1 for all i ̸= j (pairwise co-prime)

Let m = m1 ·m2 · · ·mk

Given values x1,x2, . . . ...
... a unique solution x (mod m) such that x1 ≡ x mod m1, x2 ≡ x mod m2, ...

A Practical Use
For input x , we want to do some long computation f (x) mod mn (e.g, powering)

Instead:
1. Compute xm = x mod m
2. Compute xn = x mod n
3. Compute ym = f (xm) mod m
4. Compute yn = f (xn) mod n
5. Combine results ym and yn using CRT to find result y (mod mn)

Steps 3 and 4 work on smaller numbers, so can be faster overall

If steps 3 and 4 an be done in parallel can be much faster!

Hardware accelerators for cryptography use this!
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Playing with Numbers... Just Because...

Recall proof that gcd(x ,m) = 1 =⇒ x has a mult inverse mod m
⇒ Looked at products 0x ,1x , . . . ,(m−1)x (all mod m)

Showed that products contain exactly one copy of every value 0,1, . . . ,m−1

Remember Steve’s advice? Be exploratory. Be playful.
What else can we do with these products?
What if we multiplied all the non-zero values together? Why? Why not?

Products just rearrange all values, so equal to product of all values...

1x ·2x · · · · · (m−1)x ≡ 1 ·2 · · · · · (m−1) (mod m)

(1 ·2 · · · · · (m−1))xm−1 ≡ 1 ·2 · · · · · (m−1) (mod m)

Wouldn’t it be cool if we could cancel out 1 ·2 · · · · · (m−1) from both sides?
To do that, need a multiplicative inverse or gcd(1 ·2 · · · · · (m−1),m) = 1
True if and only if m is prime – this seems important...

Congratulations! By being playful, you are as good a mathematician as Fermat!
If only it were really that easy....
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Fermat’s Little Theorem

Fermat’s Little† Theorem: For prime p, and a ̸≡ 0 (mod p),
ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}. All different modulo p since a has
an inverse modulo p (so multiplying by a is a bijection). Therefore

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) (mod p),

since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) (mod p).

Since p is prime, its smallest factor > 1 is p, and so 1 · · ·(p−1) is relatively
prime to p and hence has a multiplicative inverse. Multiply each side above
by this multiplicative inverse to get

a(p−1) ≡ 1 (mod p).

† Not Fermat’s Last Theorem. Yes, both “FLT.” Yes, can be confusing.
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Proof Illustration with Numbers

We’ll use p = 5 and a = 2

First sequence: 1,2,3,4

Second sequence: (2 ·1), (2 ·2), (2 ·3), (2 ·4) = 2,4,1,3 (mod 5).

Multiply LHS and simplify: (2 ·1) · (2 ·2) · (2 ·3) · (2 ·4) = 24(1 ·2 ·3 ·4)

Multiply RHS and reorder: 2 ·4 ·1 ·3 = 1 ·2 ·3 ·4
Because multiplication is commutative

Was the same sequence mod 5, so 24 ·1 ·2 ·3 ·4 ≡ 1 ·2 ·3 ·4 (mod 5)

Since 5 is prime, no shared factors with any of 1, 2, 3, or 4
⇒ gcd(1 ·2 ·3 ·4,5) = 1
⇒ 1 ·2 ·3 ·4 has a mult inverse mod 5, so can cancel out

Therefore, 24 ≡ 1 (mod 5)

Really? 24 = 16 and 16 mod 5 = 1 – so yes, really.
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Concept Check!

Question: Which of the following was used in Fermat’s theorem proof?

(A) The mapping f (x) = ax mod p is a bijection.

(B) Multiplying a number by 1, gives the number.

(C) When p is prime, gcd(p,(p−1)!) = 1

(D) Multiplying a number by 0 gives 0.

(E) Multiplying elements of sets A and B together is the same if A = B.

Answer: (A), (C), and (E)
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Fermat’s Little Theorem Tricks

FLT: For prime p, and a ̸≡ 0 (mod p), ap−1 ≡ 1 (mod p).

Trick #1: Simplifying powering by reducing the exponent.
What is 2101 (mod 7)?
What is quotient and remainder dividing exponent (101) by p−1 (6)?

101 = 6 ·16+5, so 2101 ≡ 26·16+5 ≡
(
26)16 ·25 ≡ 25 ≡ 32 (mod 7)

32 mod 7 = 4, so 2101 ≡ 4 (mod 7)
A bit easier than using 2101 = 2535301200456458802993406410752

Trick #2: Computing multiplicative inverses mod a prime p.
Note that ap−1 ≡ a ·ap−2 ≡ 1 (mod p)
⇒ so ap−2 mod p is the multiplicative inverse of a

Example: Multiplicative inverse of 4 (mod 7)?
45 = 1024 and 1024 mod 7 = 2

Using Python: “p=7; pow(4,p-2,p)” gives 2.
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Fermat’s Little Theorem Almost-Tricks

FLT: For prime p, and a ̸≡ 0 (mod p), ap−1 ≡ 1 (mod p).

Trick #3: Almost.... Can we use FLT to test for primality?

Example: Is 5153642624137 prime?
Could try dividing things into it... slow.
Or:

So an−1 ̸≡ 1 (mod n): n doesn’t satisfy property all primes must
So... n is not prime

Correct in this case, but will this always work? No - two problems:
1. For all composite n, some choices of a will give 1

Solution: Usually... Less than half of a’s, so pick at random (and repeat!)

2. For some n, formula holds for all a’s (Carmichael numbers)
Solution: A bit harder, but can solve....

Result: Miller-Rabin primality testing algorithm
Berkeley connection! Based on Gary Miller’s Ph.D. dissertation from Berkeley.
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Summary

Extended Euclid: Find a,b where ax +by = gcd(x ,y)
Idea: compute a,b recursively (euclid), or iteratively
Inverse: ax +by ≡ ax ≡ gcd(x ,y) (mod y)
If gcd(x ,y) = 1, we have ax ≡ 1 (mod y)
−→ a ≡ x−1 (mod y)

Fundamental Theorem of Arithmetic: Unique prime factorization of any n
Claim: if p|n and n = xy , p|x of p|x .

Proof relies on Extended Euclid GCD Theorem
Fundamental Theorem follows using induction + contradiction. Chinese

Remainder Theorem:
If gcd(n,m) = 1 then x = a (mod n), x = b (mod m) unique sol.
Proof: Find u = 1 (mod n), u = 0 (mod m),

and v = 0 (mod n), v = 1 (mod m).
Then: x = au+bv = a (mod n)

Fermat: For prime p, ap−1 ≡ 1 (mod p)
Proof Idea: f (x) = a ·x (mod p) is bijection on S = {1, . . . ,p−1}.
Multiply domain elts and range elts – cancel and left with just ap−1 in range
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