Extended GCD Algorithm, Chinese Remainder Theorem, Fermat's Little Theorem

CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 8 Ref: Notes 6 and 7 Extending the basic Euclid GCD algorithm Computing additional useful values along the way Using these values to find multiplicative inverses Other uses of Euclid: Fundamental Theorem of Arithmetic

Chinese Remainder Theorem Mapping from one modulus to two (or several) Use in speeding up computations with composite moduli

Fermat's Little Theorem Powers with a prime modulus A few tricks enabled by Fermat's Little Theorem

```
def euclid(x, y):
    if y == 0:
        return x
```

return euclid(y, x % y)

Theorem: euclid (x, y) correctly computes gcd(x, y).

Run time: When $x \ge y$, euclid takes at most $2\log_2 x$ steps \Rightarrow This is linear in the *number of bits* of x (That's fast!)

Can quickly tell if there is a multiplicative inverse for x mod m

Next Problem: So how do we compute the inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that ax + by = d where d = gcd(x, y).

Just about existence – we'll talk about computing a and b later!

Re-stated: "We can make *d* out of sum of multiples of *x* and *y*."

Relation to multiplicative inverse of *x* modulo *m*?

We have gcd(x,m) = 1 (otherwise no inverse!), so there are $a, b \in \mathbb{Z}$ with $ax + bm = 1 \implies bm = 1 - ax \implies ax \equiv 1 \pmod{m}$ So a is the multiplicative inverse of $x \pmod{m}$!

Example: For x = 12 and m = 35, we have gcd(12,35) = 1, so inverse exists. Values a = 3 and b = -1, since $3 \cdot 12 + (-1) \cdot 35 = 1$. \Rightarrow Multiplicative inverse of 12 (mod 35) is *a*, or 3.

Check: $3 \cdot 12 = 36$ and $36 \equiv 1 \pmod{35}$.

Pulling Multiples of x and y Out of GCD Computation

```
euclid(35,12)
euclid(12, 11) ;; euclid(12, 35%12)
euclid(11, 1) ;; euclid(11, 12%11)
euclid(1,0)
1
```

How did euclid get 11 from 35 and 12? $11 = 35 \mod 12$ Another view of this operation: $35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$

How does gcd get 1 from 12 and 11? $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35

Get 11 from 35 and 12 and plugin.... collect multiples of 12 and 35... Finally: a = 3 and b = -1.

Extended GCD Algorithm

```
def extgcd(x, y):
    if y == 0:
        return (x, 1, 0)
    (d, a, b) = extgcd(y, x % y)
    return (d, b, a - b*(x // y)) # Note: // is integer division
```

```
Claim: Returns (d, a, b): d = gcd(x, y) and d = ax + by.
```

Example:

```
extgcd(35,12)
extgcd(12, 11)
extgcd(11, 1)
extgcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Extended GCD Algorithm: Correctness

```
def extgcd(x, y):
    if y == 0:
        return (x, 1, 0)
    (d, a, b) = extgcd(y, x % y)
    return (d, b, a - b*(x // y)) # Note: // is integer division
```

```
Theorem: extgcd (x, y returns (d, a, b), where d = \text{gcd}(a, b) and d = ax + by.
```

Proof: Computation of *d* is exactly as before, so d = gcd(a, b). We prove the remaining property by (strong) induction on *y*.

Base case (y = 0): extgcd(x, 0) returns (x,1,0), we know x = d and $1 \cdot x + 0 \cdot 0 = x \checkmark$

Extended GCD Algorithm: Correctness continued

Induction Hypothesis: Assume that for all $x' \ge y'$ and y' < y, extgcd(x', y') returns (d, a, b) with $d = a \cdot x' + b \cdot y'$.

Induction Step: We prove that at y, extgcd(x,y) returns (d, A, B) with $d = A \cdot x + B \cdot y$.

Makes a recursive call for $extgcd(y, x \mod y)$. Since $(x \mod y) < y$ the induction hypothesis states that this returns (d, a, b) with $a \cdot y + b \cdot (x \mod y) = d$.

Given this value from the recursive call, extgcd returns (d, A, B) calculated as A = b and $B = a - b \cdot \lfloor \frac{x}{v} \rfloor$ (from the algorithm).

$$A \cdot x + B \cdot y = b \cdot x + (a - b \cdot \lfloor \frac{x}{y} \rfloor)y$$
$$= b \cdot x + a \cdot y - b \lfloor \frac{x}{y} \rfloor y$$
$$= a \cdot y + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$
$$= a \cdot y + b \cdot (x \mod y)$$

This last formula matches the induction hypothesis, so is equal to *d*.

Non-Recursive Hand Calculation Method

Example for 7 and 60 — note gcd(7,60) = 1

7(0) + 60(1) = 60 (1)7(1) + 60(0) = 7 (2)

Idea: subtract largest multiple of the second one you can keeping RHS smaller That multiple is $\lfloor\frac{60}{7}\rfloor=8$

	7(0) + 60(1)	=	60	(1)
-	7(8) + 60(0)	=	56	(2 multiple)
	7(-8) + 60(1)	=	4	(3)

Do it again with (2) and (3) [multiple is $\lfloor \frac{7}{4} \rfloor = 1$

$$7(1) + 60(0) = 7 (2)$$

- 7(-8) + 60(1) = 4 (3 multiple)
7(9) + 60(-1) = 3 (4)

And again....

$$7(-8) + 60(1) = 4 \quad (3)$$

- 7(9) + 60(-1) = 3 (4)
7(-17) + 60(2) = 1

Multiplicative inverse of 7 (mod 60) is $-17 \equiv 43 \pmod{60}$

Wrap-up of Computing Multiplicative Inverses

Conclusion: Can find multiplicative inverses with *n*-bit modulus in O(n) time!

Very different from grade school: try 1, try 2, try 3... optimized: $2^{n/2}$ time.

Inverse of 500,000,357 modulo 1,000,000,000,000? \leq 80 divisions. versus 1,000,000

This kind of cryptography is impossible without an algorithm like Euclid's.

Euclid's Extended GCD Theorem is useful for things beyond computation.

Theorem: Every natural number can be written as the product of primes.

Proof: Uses strong induction – existence of product of primes: *Case 1: n* is prime. Done. *Case 2: n* is not prime, so can be written as $n = a \cdot b$. By IH, both *a* and *b* can be written as the product of primes.

Theorem: The prime factorization of *n* is unique up to reordering.

Proof idea: We use Euclid's Extended GCD Theorem!

Fundamental Theorem of Arithmetic: Every natural number can be written as a unique (up to reordering) product of primes.

Euclid For Proofs About Shared Factors

Claim: For $x, y, z \in \mathbb{Z}^+$ with gcd(x, y) = 1 and x | yz then x | z.

Idea (restatement): x doesn't share factors with y so it must divide z.

Euclid: There exists $a, b \in \mathbb{Z}$ such that $1 = ax + by \implies z = axz + byz$.

Observe: $x \mid axz$ (obviously) and $x \mid byz$ (since $x \mid yz$), and x divides the sum. $\implies x \mid axz + byz$, and since axz + byz = z we have $x \mid z$.

So to prove Fundamental Theorem of Arithmetic: Proof by contradiction: Assume two factorizations $p_1 \cdots p_k$ and $q_1 \cdots q_\ell$ Induction: p_1 divides both (same number). Using claim: p_1 divides $q_1 \cdot q_{\ell-1}$ or q_ℓ . Conclusion: $p_1 = q_i$ for some *i*.

Values Modulo Product of Two Primes

X	<i>x</i> mod 3	<i>x</i> mod 5
0	0	0
1 2 3 4 5 6 7	1	1
2	2	2 3
3	0	
4	1	4 0
5	2	0
6	0	1
7	1	2
8	2	3 4
9	0	
10	1	0
11	2	1
12	0	2 3
13	1	3
14	2	4

Table shows x from 0 to $14 - \text{so } x \pmod{15}$

Any x with $x \equiv 1 \pmod{3}$ and $x \equiv 4 \pmod{5}$? Yes! x = 4

Any x with $x \equiv 2 \pmod{3}$ and $x \equiv 3 \pmod{5}$? Yes! x = 8

x any $a, b: x \equiv a \pmod{3}$ and $x \equiv b \pmod{5}$? Yes! Check all – or prove a general theorem!

Chinese Remainder Theorem (2 modulus version)

Theorem: For m, n with gcd(m, n) = 1, and any a, b, there is exactly one $x \in \{0, 1, ..., mn - 1\}$ with $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$.

Note: Previous table had m = 3, n = 5, two primes. The requirement isn't so strict: *m* and *n* only need to be relatively prime. (Example on next slide...)

Proof: First consider existence of a solution.

gcd(n,m) = 1 so compute $s = n^{-1} \pmod{m}$, and consider integer $u = s \cdot n$ $u \mod m = 1$ $u \mod n = 0$

Similarly, compute $t = m^{-1} \pmod{n}$, and consider $v = t \cdot m$ $v \mod n = 1$ $v \mod m = 0$

Now compute $x = (a \cdot u + b \cdot v) \mod mn$ Consider mod m: $x \equiv a \cdot u + b \cdot v \equiv a \cdot 1 + b \cdot 0 \equiv a \pmod{m}$ Consider mod n: $x \equiv a \cdot u + b \cdot v \equiv a \cdot 0 + b \cdot 1 \equiv b \pmod{n}$

Unique: For any $x \in \{0, 1, ..., mn-1\}$ compute $a = x \mod m$ and $b = x \mod n$ Can map $x \mapsto (a, b)$ and $(a, b) \mapsto x$

 \Rightarrow Mapping is a bijection (one-to-one) so solution is unique.

Using the Chinese Remainder Theorem

Proof that solution x exists was constructive, so can use it as to compute

Ex: Let's find x (mod 1155) with $x \equiv 17 \pmod{33}$ and $x \equiv 14 \pmod{35}$ So n = 33, m = 35, nm = 1155, a = 17, and b = 14 \Rightarrow Note! n and m are not prime – but are relatively prime! We typically use prime moduli, but this is not required!

Compute
$$s = n^{-1} \pmod{m} = 33^{-1} \pmod{35}$$
 This is 17
Computed using extgcd: Check $33 \cdot 17 = 561 = 16 \cdot 35 + 1$
 $u = s \cdot n = 17 \cdot 35 = 595$

Compute $t = m^{-1} \pmod{n} = 35^{-1} \pmod{33}$ This is 17 (coincidence!) $v = t \cdot m = 17 \cdot 33 = 561$

Finally, compute $a \cdot u + b \cdot v = 17 \cdot 595 + 14 \cdot 561 = 17696$ Then reduce: $x = 17969 \mod 1155 = 644$

Did it really work? $644 \mod 33 = 17 \text{ (since } 644 = 19 \cdot 33 + 17)$ $644 \mod 35 = 14 \text{ (since } 644 = 18 \cdot 35 + 14)$

Chinese Remainder Theorem: Extension and Uses

Extension

No need to restrict to just two moduli

Use m_1, m_2, \ldots, m_k that have $gcd(m_i, m_i) = 1$ for all $i \neq j$ (pairwise co-prime)

Let $m = m_1 \cdot m_2 \cdots m_k$

Given values x_1, x_2, \ldots ...

... a unique solution x (mod m) such that $x_1 \equiv x \mod m_1, x_2 \equiv x \mod m_2, ...$

A Practical Use

For input *x*, we want to do some long computation $f(x) \mod mn$ (e.g, powering) Instead:

- 1. Compute $x_m = x \mod m$
- 2. Compute $x_n = x \mod n$
- 3. Compute $y_m = f(x_m) \mod m$
- 4. Compute $y_n = f(x_n) \mod n$
- 5. Combine results y_m and y_n using CRT to find result $y \pmod{mn}$

Steps 3 and 4 work on smaller numbers, so can be faster overall

If steps 3 and 4 an be done in parallel can be much faster!

Hardware accelerators for cryptography use this!

Playing with Numbers... Just Because...

Recall proof that $gcd(x,m) = 1 \implies x$ has a mult inverse mod $m \implies$ Looked at products $0x, 1x, \dots, (m-1)x$ (all mod m)

Showed that products contain exactly one copy of every value $0, 1, \ldots, m-1$

Remember Steve's advice? Be exploratory. Be playful. What else can we do with these products? What if we multiplied all the non-zero values together? Why? Why not?

Products just rearrange all values, so equal to product of all values...

$$1x \cdot 2x \cdots (m-1)x \equiv 1 \cdot 2 \cdots (m-1) \qquad (\text{mod } m)$$
$$(1 \cdot 2 \cdots (m-1))x^{m-1} \equiv 1 \cdot 2 \cdots (m-1) \qquad (\text{mod } m)$$

Wouldn't it be cool if we could cancel out $1 \cdot 2 \cdots (m-1)$ from both sides? To do that, need a multiplicative inverse or $gcd(1 \cdot 2 \cdots (m-1), m) = 1$ True if and only if *m* is prime – this seems important...

Congratulations! By being playful, you are as good a mathematician as Fermat! *If only it were really that easy....*

Fermat's Little Theorem

Fermat's Little[†] Theorem: For prime p, and $a \neq 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Consider $S = \{a \cdot 1, ..., a \cdot (p-1)\}$. All different modulo *p* since *a* has an inverse modulo *p* (so multiplying by *a* is a bijection). Therefore

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \pmod{p}.$$

Since *p* is prime, its smallest factor > 1 is *p*, and so $1 \cdots (p-1)$ is relatively prime to *p* and hence has a multiplicative inverse. Multiply each side above by this multiplicative inverse to get

$$a^{(p-1)} \equiv 1 \pmod{p}$$
.

[†] Not Fermat's Last Theorem. Yes, both "FLT." Yes, can be confusing.

We'll use p = 5 and a = 2

First sequence: 1,2,3,4

Second sequence: $(2 \cdot 1), (2 \cdot 2), (2 \cdot 3), (2 \cdot 4) = 2, 4, 1, 3 \pmod{5}$.

Multiply LHS and simplify: $(2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3) \cdot (2 \cdot 4) = 2^4 (1 \cdot 2 \cdot 3 \cdot 4)$

Multiply RHS and reorder: $2 \cdot 4 \cdot 1 \cdot 3 = 1 \cdot 2 \cdot 3 \cdot 4$ Because multiplication is commutative

Was the same sequence mod 5, so $2^4 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \equiv 1 \cdot 2 \cdot 3 \cdot 4 \pmod{5}$

Since 5 is prime, no shared factors with any of 1, 2, 3, or 4 $\Rightarrow \gcd(1 \cdot 2 \cdot 3 \cdot 4, 5) = 1$ $\Rightarrow 1 \cdot 2 \cdot 3 \cdot 4$ has a mult inverse mod 5, so can cancel out

Therefore, $2^4 \equiv 1 \pmod{5}$

Really? $2^4 = 16$ and $16 \mod 5 = 1 - \text{so yes}$, really.

Question: Which of the following was used in Fermat's theorem proof?

- (A) The mapping $f(x) = ax \mod p$ is a bijection.
- (B) Multiplying a number by 1, gives the number.
- (C) When p is prime, gcd(p, (p-1)!) = 1
- (D) Multiplying a number by 0 gives 0.
- (E) Multiplying elements of sets A and B together is the same if A = B.

Answer: (A), (C), and (E)

Fermat's Little Theorem Tricks

FLT: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Trick #1: Simplifying powering by reducing the exponent. What is $2^{101} \pmod{7}$? What is quotient and remainder dividing exponent (101) by p-1 (6)? $101 = 6 \cdot 16 + 5$, so $2^{101} \equiv 2^{6 \cdot 16 + 5} \equiv (2^6)^{16} \cdot 2^5 \equiv 2^5 \equiv 32 \pmod{7}$ $32 \mod 7 = 4$, so $2^{101} \equiv 4 \pmod{7}$ A bit easier than using $2^{101} = 2535301200456458802993406410752$

Trick #2: Computing multiplicative inverses mod a prime p. Note that $a^{p-1} \equiv a \cdot a^{p-2} \equiv 1 \pmod{p}$ \Rightarrow so $a^{p-2} \mod p$ is the multiplicative inverse of a Example: Multiplicative inverse of 4 (mod 7)? $4^5 = 1024$ and 1024 mod 7 = 2 Using Python: "p=7; pow (4, p-2, p)" gives 2.

Fermat's Little Theorem Almost-Tricks

FLT: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Trick #3: Almost.... Can we use FLT to test for primality?

Example: Is 5153642624137 prime? Could try dividing things into it... slow. Or:

> >>> n=5153642624137 >>> pow(5, n-1, n) 15625

So $a^{n-1} \not\equiv 1 \pmod{n}$: *n* doesn't satisfy property all primes must So... *n* is not prime

Correct in this case, but will this always work? No - two problems:

- 1. For all composite *n*, *some* choices of *a* will give 1 Solution: Usually... Less than half of a's, so pick at random (and repeat!)
- 2. For *some n*, formula holds for all *a*'s (Carmichael numbers) *Solution: A bit harder, but can solve....*

Result: Miller-Rabin primality testing algorithm Berkeley connection! Based on Gary Miller's Ph.D. dissertation from Berkeley.

Summary

Extended Euclid: Find *a*, *b* where ax + by = gcd(x, y)Idea: compute *a*, *b* recursively (euclid), or iteratively Inverse: $ax + by \equiv ax \equiv gcd(x, y) \pmod{y}$ If gcd(x, y) = 1, we have $ax \equiv 1 \pmod{y}$ $\longrightarrow a \equiv x^{-1} \pmod{y}$

Fundamental Theorem of Arithmetic: Unique prime factorization of any *n* Claim: if p|n and n = xy, p|x of p|x.

Proof relies on Extended Euclid GCD Theorem

Fundamental Theorem follows using induction + contradiction. Chinese

Remainder Theorem:

If gcd(n,m) = 1 then $x = a \pmod{n}$, $x = b \pmod{m}$ unique sol. Proof: Find $u = 1 \pmod{n}$, $u = 0 \pmod{m}$, and $v = 0 \pmod{n}$, $v = 1 \pmod{m}$. Then: $x = au + bv = a \pmod{n}$

Fermat: For prime p, $a^{p-1} \equiv 1 \pmod{p}$ Proof Idea: $f(x) = a \cdot x \pmod{p}$ is bijection on $S = \{1, \dots, p-1\}$. Multiply domain elts and range elts – cancel and left with just a^{p-1} in range