Public Key Cryptography and RSA

CS70: Discrete Mathematics and Probability Theory

UC Berkeley — Summer 2025

Lecture 9
Ref: Note 7

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 1/26

Today is light on new math...
But very cool (and important) application of what we’ve been studying

@ Cryptography: Basic Concepts
@ Public Key Cryptography Idea
© The RSA cryptosystem

@ Whatitis
@ Proof that it works
@ How to efficiently implement

© Digital Signatures

@ The basic idea

@ RSA for signatures

© Signatures for integrity on the web
@ Signatures for authentication

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 2/26

Quick Review Check!

Setup: x=5(mod7) and x=5 (mod 11)
y=3(mod7) and y=9 (mod 11)

Fill in the blank (all mod m values in the range 0,1,...,m—1):

X+ymod7=_1
X+ymodil=_3
Xymod7=_1
True/False: x-x-x-x mod 77 = (((x- X mod 77)-x mod 77) - X mod 77) _True
Xmod77=_5
ymod77=_31
Number of solutions for zin z=y (mod 77)? __1__ (in-range!)
' mod7=_5
" mod11=_5
1 mod77=_ 5

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 3/26

Cryptography

Y Encryption c Decryption | ,,
—> —_— —>
C = E(Kg,M) M = D(Kp,C)
Alice Bob
Eve

Terminology:

Alice: Sender
Bob: Receiver
Eve: Eavesdropper

M: Plaintext
C: Ciphertext

E: Encryption function
Kg: Encryption key

D: Decryption function
Kp: Decryption key

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 4/26

Exclusive Or

Bits for truth values: 0=False 1 =True
In C programming, True is any non-zero value

Recall: In logic “OR” means “one or more of the inputs is true.”
Inclusive OR

Can also define exclusive OR: “one and only one input is true”

(A[B[AVE] [A[B[A2B]
0|0 0 0|0 0
0] 1 1 0|1 1
110 1 110 1
111 1 111 0

Alternate view: Mod 2 addition (1+1=2=0 (mod 2))

Regular addition properties (associative, commutative, ...) plus:
0 is additive identity: For any x, we have x®0 = x
Self-inverse: For any x, we have x®&x =0 (so also: (x®y)dy = X)
Uniform: If y is uniform (prob Yz being 0 or 1) then x @ y is uniform

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 5/26

Cryptography

M Encryption c Decryption | ,,
—> _— —>
C = E(Kg, M) M = D(Kp,C)
Alice Bob
Eve
Terminology: Traditional Cryptography
Alice: Sender Ke=Kp
Bob: Receiver sometimes called “symmetric cryptography”
Eve: Eavesdropper
Example:
M: Plaintext M is an n-bit string
C: Ciphertext K is a string of n random, independent bits
. . C is bitwise XOR of M and K
E: Encryption function
Kg: Encryption key M: 011101001 ... 110
K: 101011011 ... 010

D: Decryption function
Kp: Decryption key C: 110110010 ... 100

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 6/26

Cryptography

M Encryption c Decryption | ,,
C = E(Kg, M) M = D(Kp,C)
Alice Bob
Eve
M: 011101001 ... 110 Strong points:
K: 101110010 ... 010 Ciphertext is random (100% secure!)
C: 110011011 ... 100 Extremely fast
G Problems:

Biti: Cj = M & K; Alice and Bob must share a secret K
Important: Key can only be _use(‘j‘ oncg!)

K; is random (uniform, independent) (this scheme is a “one-time pad”)

= C; is random/uniform For modern technology:

Do you share a secret with Amazon?
... a new secret for each purchase?

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 7/26

Cryptography: A Different Way...

v Encryption c Decryption | ,,
—> _ —>
C = E(Kg, M) M = D(Kp,C)

Alice Bob
Eve
What if Kg and Kp aren’t the same? Strong points:
What really needs to be secret? Communicate securely with strangers!
Algorithms should never be secret! No need to pre-arrange shared secret

Kp? Yes! If not secret, Eve could decrypt. Bob can send public key to Alice

Problems:

KE'l.ilc\)N;r)(I)’i)lem { others can encrypt Algorithms not (initially!) obvious
Kp shouldn’t be computable from K¢ Known algorithms are slow
Otherwise Kg can be public Basic idea: Diffie and Hellman (1975)

First real algorithm: RSA (1976)

Rivest, Shamir, and Adelman
Adelman: Berkeley connection!

This idea: Public key cryptography

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 8/26

The RSA Algorithm

Three algorithms: Does this work?
o Key Generation Need D(Kp, E(Kg,M)) = M for all M
e Encryption | hope so! (We'll see....)
* Decryption How are Kg and Kp related?
Key Generation: Compute Kp from just Kg?
Pick two large primes p and g No! Need knowledge of p and q
Compute N = pg Are p and q part of public info?
Messages are from {0,1,....N—1} No! Just publish the product
Encryption/decryption work mod N Can you compute p and g from Kg?

Pick e relatively prime to (p—1)(g—1) Well.... we don't think so.

Compute d=e~" (mod (p—1)(q—1)) Possible to factor efficiently?

Now Ke = (e, N) No known polynomial time algorithms
And Kp = (d,N) Millennia of attempts...
. New wrinkle: Quantum computing
Encryption:
E(Kg,M) =M€ mod N Is factoring the only way to break RSA?
. Probably — but unknown!
Decryption:

E(Kp,C) = C% mod N

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 9/26

Concept Check!

Question: Which of the following is not true?
Notation: Alice is sending to Bob. Key parts (N = pg, e, d). Eve is evil.

(A)
(B) Alice knows e and N
(C) ed=1 (mod N—1)

(D) Bob forgot p and g but can still decode
(E) Bob knows d

(F) e

F) ed=1 (mod (p—1)(q-1))

Eve knows eand N

Answer: (C) is not true — correct product is in (F)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 10/26

Encryption/Decryption Example

Values:
p=7,9q=11,N=77
So (p—1)(q—1)=60
ged(7,60) = 1 and mult inverse of 7 (mod 60) is 43
This was the hand-calculated example from last lecture!

So:
Ke = (e,N) = (7,77)
Kp = (d,N) = (43,77)

For example: M = 2:
C = E(Kg,M) = M® mod N = 27 mod 77 = 128 mod 77 = 51.

D(Kp,C) = C% mod N =514 mod 77...

How are we going to do this????
Cheat — Python: pow (51, 43, 77) gives 2 — yay!

But how did Python do it? 43 multiplications?

No — we can do better. (And we must do better when d is 2048 bits!)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 11/26

Correctness: Does RSA Always Decode Correctly?

Need D(Kp,E(Ke,M))=M = (M®)? = M = M (mod N)?
d=e' (mod (p—1)(g—1)) = ed=1+k(p—1)(g—1)

N = pg with gcd(p,q) = 1 — so we can use CRT and look at power mod p
Med = M1+k(e=1)(a-1) = pf. MKP-D(@-1) = M. (MP- 1) @ (mod p)
Fermat’s Little Theorem!
When M#0 (mod p), MP~"=1 (mod p) = M =M (mod p)
When M =0 (mod p)? Then M®d =0= M (mod p)

Mod g works exactly the same, so Mé? = M (mod q)

Chinese Remainder Theorem!
Me? mod pq is the unique z with z=M®? (mod p) and z= M (mod q)

= That's M
Theorem: Let values N = pgq, e, and d be computed as in the RSA key

generation step. Then forall M € {0,1,...,N—1}, Mé@ =M (mod N) (or
equivalently, D(Kp, E(Kg,M)) =M

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 12/26

Repeated Squaring

How can we compute large powers fast?
512 mod 77 = 2601 mod 77 = 60 1 modular multiplication
514 mod 77 = (512) mod 77 =602 mod 77 =58 2 modular multiplications
518 mod 77 = (514)° mod 77 =582 mod 77 =53 3 modular multiplications
5116 mod 77 = (51)8 mod 77 =532 mod 77 =37 4 modular multiplications
5132 mod 77 = (37)'® mod 77 =372 mod 77 =60 5 modular multiplications
Cool: Computed 5132 in 5 multiplications (instead of 32)... but we want 5143
Notice: 43 is 101011 in binary:
Binary: 1.254+0.24+1.2340.224+1.2'4+1.20=324+8+2+1
= S0 514 =5132.518.512.511
= We have those! 5143 = 60-53-60- 51
Remember to reduce mod 77 each step:
60-53=3180 — 3180 mod 77 =23

23-60 mod 77 =71
71-51 mod 77 =2

Cost: 5 mod multiplications for squarings, 3 mod multiplication to put together
Computed 5143 mod 77 in just 8 modular multiplications!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 13/26

Powering By Repeated Squaring

In general: for computing x¥

Write out y in binary (|logs ¥ | + 1 bits)
Calculate necessary power-of-two exponents: |logs y | squarings
Multiply together the “1 bits”: No more than |log, y | multiplications

Total: At most 2|log, y | multiplications
If nis the number of bits in y, thisis O(n) — Fast(-ish)!

How much time does it take to do modular multiplication?
O(n?) per mult is easy — Powering time: O(n®)
O(n'59) per mult isn’t much harder — Powering time: O(n?>9)

Can multiply even faster asymptotically, but only better for /arge numbers
= large numbers means tens of thousands of bits (or more)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 14/26

Elegant Recursive Implementation!

def modpow(x, y, n):
if y ==
return 1

otherbits = modpow(x, y//2, n) # Higher bits
ify %2 ==0:

return (otherbitsxotherbits) % n # last bit is O
else:

return (otherbitsxotherbits*x) %$ n # last bit is 1

modpow (51, 43, 77)
modpow (51, 21, 77)
modpow (51, 10, 77)
modpow (51, 5, 77)
modpow (51, 2, 77)
modpow (51, 1, 77)
modpow (51, 0, 77) —> Returns 1 (51% mod 77)
— Lastbit1 — Returns 1-1-51 =51 mod 77 =51 (i.e., 51" mod 77)
— Last bit 0 — Returns 51-51 = 2601 mod 77 =60 (i.e., 512 mod 77)

— Lastbit1 —s Returns 23-23-51 = 26979 mod 77 =29 (i.e., 512! mod 77)
— Last bit 1 — Returns 29.29.51 = 42891 mod 77 =2 (i.e., 51*3 mod 77)

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory

Speed of RSA

Fast... ish

Modular Exponentiation: x¥ mod N.
N has n bits: O(n®) time, or faster if clever (and n is large)

Real-world times (this laptop - Intel Core Ultra 7 155U):
0.431 msec for a 2048-bit powering (optimized!)
= (1/.000431) %2048 ~ 4.7 million bits/sec throughput

That’s good — not great though... Full HD streaming: 5-8 Mbps

For comparison: Strong symmetric encryption (AES-256): 13.6 billion bits/sec

Real-world solution — | have 100 MB | want to send:
Step 1: Create a random 256-bit (32 byte) key for symmetric cryptography
Called the “session key”
Step 2: Encrypt those 256 bits using public-key cryptography (like RSA)
Send to the receiver - now you share a secret with a stranger!
Step 3: Encrypt the 100 MB of data using symmetric cryptography
Fast, fast, fast!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 16/26

Some Efficiency Tricks

Trick 1: So use a small e — does need to be random or unguessable

Example 1: e=3
Only 3 modular multiplications to encrypt!
Need ged(3,(p—1)(q—1)) =1

Example 2: e = 65,537 =216 4 1
Encryption in 17 modular multiplications
gcd(65537,(p—1)(g—1)) = 1 more common
This is widely used in practice

So... fast encryption (real world: ~ 160MBps)
But still need to decrypt (d is large!)
Trick 2: Use Chinese Remainder Theorem to decrypt

Decryption knows private key, so can know p and g
Do powering mod p and mod q
Combine results with CRT to get result mod pg = N

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 17/26

Key Generation

Important first step: Find large primes pand q. How?

def getprime (bits):
while True:
x = random.randint (2+ (bits-1), 2**bits-1)
if isprime(x): return x

What is i sprime? Miller-Rabin primality test!
How long does this take?

Prime Number Theorem: n(N) number of primes less than N. For all
N>17,

n(N)> N/InN.
So: Choosing randomly gives approximately 1/(In N) chance of number being
a prime. Expected number of iterations: In N (probability? expected? later!)

With p and q the rest is easy!
Used (extended GCD) to find e with gcd(e,(p—1)(g—1)) =1
extgcd also gives mult inverse mod (p—1)(g—1) —thisis d

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 18/26

Speed of Breaking RSA

“Can factor efficiently” — “Can break RSA efficiently”
How? Factor N to get p and g — can compute d from e
Converse?
In other words: Is breaking RSA as hard as factoring?
We don’t know — interesting (and feasibly solvable) open problem
Easy? No - people have been trying to solve for > 40 years
How fast can we factor?
No polynomial-time algorithm known (for a classical computer)
People have been trying for millennia — remember Euclid was 300BC!
But ... no polytime deterministic primality testing until 2002!
GNFS is faster than exponential... slower than polynomial...
Record largest “RSA number” ever factored: 829 bits (completed in 2020)
Or at least... the largest publicly announced
829 bits took 2700 core-years of computing power

Possible game-changer:

Shor’s algorithm: Polynomial-time algorithm on a quantum computer
Real-world danger? Maybe... maybe not... post-quantum crypto...

UC Berkeley — Summer 2025 — Steve Tate

CS70: Discrete Mathematics and Probability Theory ~ 19/26

How Does Alice Get Bob’s Key?

What you want to happen:

I'want to securely send you my credit card number

Sure! Here's my public encryption key: Pug
E(Pug, CC#)

-
<<

Alice

\/
&
o

What you might actually happen:

I want to securely send you my credit card number

Here's my key: Puy, w Here's my key: Pug
E(Pu,, CC# B
Alice (P) > Bob

MitM

This is called a “Man in the Middle” (MitM) attack

The core question: How can you trust that key really came from Bob?

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory

Asymmetric Power

M Encryption
— >
C = B(Kp,M)

Alice
Kz is public
Anyone can encrypt

Decryption

M = D(Kp,C)

Bob

Ky is private
Only Bob can encrypt

Asymmetric — only Bob can do what the receiver needs to do.

What if... the sender had a unique power?
Could verify that a message came from the sender (only they could...)

This is a digital signature

Signature

o= 5(Ks, M)

Alice
Ks is private
Only Alice can sign

(M, o)

Verification |

V(Ky,M,0) | ©/mp
Bob

Ky is public

Anyone can Verify

UC Berkeley — Summer 2025 — Steve Tate

CS70: Discrete Mathematics and Probability Theory 21/26

Signatures using RSA.

Key Generation:
Pick two large primes p and q
Compute N = pq
Messages are from {0,1,...,N—1}
Encryption/decryption work mod N
Pick s relatively prime to (p—1)(q—1)
Compute v=s""1 (mod (p—1)(g—1))
Now Ks = (s,N) (private)
And Ky = (v,N) (public)
Signing:
o = S(Ks,M) = M® mod N
Verification:
V(Ky,M,c) = Testif M= 6" mod N

Idea: Only signer (with knowledge of s) could produce o that works

Note: RSA signing is same as RSA decryption — peculiar to RSA
Not actually true in practice (signed message padded...)
Other signature schemes (DSS, ECC, ...) don’t work like this

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 22/26

Certificate Authorities

(& Could you certify my key PUg?
) — Y y key
d D i
3% (Verifies identity)
8" Trusted 3rd Party OK, here: oc, = S(Pre, (Bob,Pug)
. (Certificate Authority)

... Later

I want to securely send you my credit card number “gop

Here's my certified key: (Bob,Pug), 0c4

-

(Verifies ac, with Pucy)
E(Pug, CC#)

Alice

Y

Problem: Alice needs a reliable copy of PUc4 — chicken and egg?
Browsers ship with trusted CA verification keys
You need to trust your browser (but you need to trust the browser anyway!)

Note: Certificate authorities have been fooled!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory ~ 23/26

Another Use of Digital Signatures

I'want to log in -- I'm Alice

B Sure! Here's a random number, R IEI

Sends signature S(Pr,, R)

Alice o . > User DB:
Verifies signature: V(Pu,, R, s) Alice: PU,

Bob: PUg

On

Advantages over passwords: Create a passkey
Server never has sensitive info
Can't accidentally tell someone pw

Disadvantages:
Must have software support
Must store private keys securely Browsers didn’t implement for a while
Now decent uptake

Real world uses:
SSH with public key auth Secure private key storage:
Passkeys for web logins Unlocked with biometric

Note: Not using bio to log in!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 24/26

Elegant Idea — Not Used Exactly...

Beautiful math, but....

What we’re describing isn’t (quite) what is used in practice
Sometimes called “Textbook RSA”
NOT secure in the real world!

What was described: deterministic encryption/cryptography
Same ciphertext for same plaintext every time
This is very bad — can recognize repeats, can replay ciphertexts, ...

So in the real world:
Random padding and checks included
For encryption: OAEP (Optimal Asymmetric Encryption Padding)
For signing: PSS (Probabilistic Signature Scheme)

More real-world issues? Take CS 161!

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 25/26

Public-Key Cryptography
Basic idea: Asymmetric power of parties and keys (public vs private)
Used for confidentiality (encryption) and integrity (signatures)

Cool and historically important public-key scheme: RSA
Works due to all the things we have been discussing!
Modular arithmetic, Fermat's Little Theorem, Chinese Remainder Theorem, ...
Efficiency: Repeated squaring, small e, CRT for decryption

Some warnings/caveats:
Understanding this math doesn’t make you a cryptography expert
Many real-world problems — modifications made
Always use a robust, well-tested cryptographic library

Modern threats to RSA (and related algorithms)
Quantum computing

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 26/26

