
Public Key Cryptography and RSA

CS70: Discrete Mathematics and Probability Theory

UC Berkeley – Summer 2025

Lecture 9

Ref: Note 7

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 1 / 26

Today

Today is light on new math...
But very cool (and important) application of what we’ve been studying

1 Cryptography: Basic Concepts

2 Public Key Cryptography Idea

3 The RSA cryptosystem

1 What it is
2 Proof that it works
3 How to efficiently implement

4 Digital Signatures

1 The basic idea
2 RSA for signatures
3 Signatures for integrity on the web
4 Signatures for authentication

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 2 / 26

Quick Review Check!

Setup: x ≡ 5 (mod 7) and x ≡ 5 (mod 11)
y ≡ 3 (mod 7) and y ≡ 9 (mod 11)

Fill in the blank (all mod m values in the range 0,1, . . . ,m−1):

x +y mod 7 = 1
x +y mod 11 = 3
xy mod 7 = 1
True/False: x ·x ·x ·x mod 77 =

((
(x ·x mod 77) ·x mod 77

)
·x mod 77

)
True

x mod 77 = 5
y mod 77 = 31
Number of solutions for z in z ≡ y (mod 77)? 1 (in-range!)
x61 mod 7 = 5
x61 mod 11 = 5
x61 mod 77 = 5

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 3 / 26

Cryptography

Alice Bob

Eve

DecryptionEncryption

Terminology:

Alice: Sender
Bob: Receiver
Eve: Eavesdropper

M: Plaintext
C: Ciphertext

E : Encryption function
KE : Encryption key

D: Decryption function
KD : Decryption key

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 4 / 26

Exclusive Or

Bits for truth values: 0 =False 1 =True
In C programming, True is any non-zero value

Recall: In logic “OR” means “one or more of the inputs is true.”
Inclusive OR

Can also define exclusive OR: “one and only one input is true”

A B A∨B
0 0 0
0 1 1
1 0 1
1 1 1

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Alternate view: Mod 2 addition (1+1 = 2 ≡ 0 (mod 2))

Regular addition properties (associative, commutative, ...) plus:
0 is additive identity: For any x , we have x ⊕0 = x
Self-inverse: For any x , we have x ⊕x = 0 (so also: (x ⊕y)⊕y = x)
Uniform: If y is uniform (prob ½ being 0 or 1) then x ⊕y is uniform

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 5 / 26

Cryptography

Alice Bob

Eve

DecryptionEncryption

Terminology:

Alice: Sender
Bob: Receiver
Eve: Eavesdropper

M: Plaintext
C: Ciphertext

E : Encryption function
KE : Encryption key

D: Decryption function
KD : Decryption key

Traditional Cryptography

KE = KD
sometimes called “symmetric cryptography”

Example:
M is an n-bit string
K is a string of n random, independent bits
C is bitwise XOR of M and K

M: 011101001 ... 110
K: 101011011 ... 010

C: 110110010 ... 100

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 6 / 26

Cryptography

Alice Bob

Eve

DecryptionEncryption

M: 011101001 ... 110
K: 101110010 ... 010

C: 110011011 ... 100

Bit i : Ci = Mi ⊕Ki

Important:
Ki is random (uniform, independent)
⇒ Ci is random/uniform

Strong points:
Ciphertext is random (100% secure!)
Extremely fast

Problems:
Alice and Bob must share a secret K
Key can only be used once!

(this scheme is a “one-time pad”)

For modern technology:
Do you share a secret with Amazon?
... a new secret for each purchase?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 7 / 26

Cryptography: A Different Way...

Alice Bob

Eve

DecryptionEncryption

What if KE and KD aren’t the same?
What really needs to be secret?
Algorithms should never be secret!

KD? Yes! If not secret, Eve could decrypt.

KE ? Why?
No problem if others can encrypt
KD shouldn’t be computable from KE
Otherwise KE can be public

This idea: Public key cryptography

Strong points:
Communicate securely with strangers!

No need to pre-arrange shared secret
Bob can send public key to Alice

Problems:
Algorithms not (initially!) obvious
Known algorithms are slow

Basic idea: Diffie and Hellman (1975)
First real algorithm: RSA (1976)

Rivest, Shamir, and Adelman
Adelman: Berkeley connection!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 8 / 26

The RSA Algorithm

Three algorithms:
• Key Generation
• Encryption
• Decryption

Key Generation:
Pick two large primes p and q
Compute N = pq

Messages are from {0,1, . . . ,N −1}
Encryption/decryption work mod N

Pick e relatively prime to (p−1)(q−1)
Compute d = e−1 (mod (p−1)(q−1))

Now KE = (e,N)
And KD = (d ,N)

Encryption:
E(KE ,M) = Me mod N

Decryption:
E(KD ,C) = Cd mod N

Does this work?
Need D(KD ,E(KE ,M)) = M for all M
I hope so! (We’ll see....)

How are KE and KD related?
Compute KD from just KE ?

No! Need knowledge of p and q
Are p and q part of public info?

No! Just publish the product
Can you compute p and q from KE ?

Well.... we don’t think so.

Possible to factor efficiently?
No known polynomial time algorithms
Millennia of attempts...
New wrinkle: Quantum computing

Is factoring the only way to break RSA?
Probably – but unknown!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 9 / 26

Concept Check!

Question: Which of the following is not true?

Notation: Alice is sending to Bob. Key parts (N = pq,e,d). Eve is evil.

(A) Eve knows e and N

(B) Alice knows e and N

(C) ed ≡ 1 (mod N −1)

(D) Bob forgot p and q but can still decode

(E) Bob knows d

(F) ed ≡ 1 (mod (p−1)(q−1))

Answer: (C) is not true – correct product is in (F)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 10 / 26

Encryption/Decryption Example

Values:
p = 7, q = 11, N = 77
So (p−1)(q−1) = 60
gcd(7,60) = 1 and mult inverse of 7 (mod 60) is 43

This was the hand-calculated example from last lecture!

So:
KE = (e,N) = (7,77)
KD = (d ,N) = (43,77)

For example: M = 2:
C = E(KE ,M) = Me mod N = 27 mod 77 = 128 mod 77 = 51.

D(KD,C) = Cd mod N = 5143 mod 77...

How are we going to do this????
Cheat – Python: pow(51,43,77) gives 2 – yay!

But how did Python do it? 43 multiplications?

No – we can do better. (And we must do better when d is 2048 bits!)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 11 / 26

Correctness: Does RSA Always Decode Correctly?

Need D(KD,E(KE ,M)) = M =⇒ (Me)d ≡ Med ?≡ M (mod N)?

d ≡ e−1 (mod (p−1)(q−1)) =⇒ ed = 1+k(p−1)(q−1)

N = pq with gcd(p,q) = 1 – so we can use CRT and look at power mod p

Med ≡ M1+k(p−1)(q−1) ≡ M ·Mk(p−1)(q−1) ≡ M ·
(
Mp−1)k(q−1)

(mod p)

Fermat’s Little Theorem!
When M ̸≡ 0 (mod p), Mp−1 ≡ 1 (mod p) =⇒ Med ≡ M (mod p)
When M ≡ 0 (mod p)? Then Med ≡ 0 ≡ M (mod p)

Mod q works exactly the same, so Med ≡ M (mod q)

Chinese Remainder Theorem!
Med mod pq is the unique z with z ≡ Med (mod p) and z ≡ Med (mod q)
⇒ That’s M

Theorem: Let values N = pq, e, and d be computed as in the RSA key
generation step. Then for all M ∈ {0,1, . . . ,N −1}, Med ≡ M (mod N) (or
equivalently, D(KD,E(KE ,M)) = M).

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 12 / 26

Repeated Squaring
How can we compute large powers fast?

512 mod 77 = 2601 mod 77 = 60 1 modular multiplication
514 mod 77 =

(
512)2

mod 77 = 602 mod 77 = 58 2 modular multiplications
518 mod 77 =

(
514)2

mod 77 = 582 mod 77 = 53 3 modular multiplications
5116 mod 77 =

(
51

)8
mod 77 = 532 mod 77 = 37 4 modular multiplications

5132 mod 77 =
(
37

)16
mod 77 = 372 mod 77 = 60 5 modular multiplications

Cool: Computed 5132 in 5 multiplications (instead of 32)... but we want 5143

Notice: 43 is 101011 in binary:
Binary: 1 ·25 +0 ·24 +1 ·23 +0 ·22 +1 ·21 +1 ·20 = 32+8+2+1

⇒ So 5143 = 5132 ·518 ·512 ·511

⇒ We have those! 5143 = 60 ·53 ·60 ·51

Remember to reduce mod 77 each step:
60 ·53 = 3180 → 3180 mod 77 = 23

23 ·60 mod 77 = 71
71 ·51 mod 77 = 2

Cost: 5 mod multiplications for squarings, 3 mod multiplication to put together
Computed 5143 mod 77 in just 8 modular multiplications!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 13 / 26

Powering By Repeated Squaring

In general: for computing xy

Write out y in binary (⌊log2 y⌋+1 bits)
Calculate necessary power-of-two exponents: ⌊log2 y⌋ squarings
Multiply together the “1 bits”: No more than ⌊log2 y⌋ multiplications

Total: At most 2⌊log2 y⌋ multiplications

If n is the number of bits in y , this is O(n) – Fast(-ish)!

How much time does it take to do modular multiplication?
O(n2) per mult is easy – Powering time: O(n3)

O(n1.59) per mult isn’t much harder – Powering time: O(n2.59)

Can multiply even faster asymptotically, but only better for large numbers
⇒ large numbers means tens of thousands of bits (or more)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 14 / 26

Elegant Recursive Implementation!
def modpow(x, y, n):

if y == 0:
return 1

otherbits = modpow(x, y//2, n) # Higher bits
if y % 2 == 0:

return (otherbits*otherbits) % n # last bit is 0
else:

return (otherbits*otherbits*x) % n # last bit is 1

modpow(51, 43, 77)
modpow(51, 21, 77)

modpow(51, 10, 77)
modpow(51, 5, 77)
modpow(51, 2, 77)
modpow(51, 1, 77)
modpow(51, 0, 77) −→ Returns 1 (510 mod 77)

−→ Last bit 1 −→ Returns 1 ·1 ·51 = 51 mod 77 = 51 (i.e., 511 mod 77)
−→ Last bit 0 −→ Returns 51 ·51 = 2601 mod 77 = 60 (i.e., 512 mod 77)

· · ·
−→ Last bit 1 −→ Returns 23 ·23 ·51 = 26979 mod 77 = 29 (i.e., 5121 mod 77)

−→ Last bit 1 −→ Returns 29 ·29 ·51 = 42891 mod 77 = 2 (i.e., 5143 mod 77)

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 15 / 26

Speed of RSA

Fast... ish

Modular Exponentiation: xy mod N.
N has n bits: O(n3) time, or faster if clever (and n is large)

Real-world times (this laptop - Intel Core Ultra 7 155U):
0.431 msec for a 2048-bit powering (optimized!)
⇒ (1/.000431)∗2048 ≈ 4.7 million bits/sec throughput

That’s good – not great though... Full HD streaming: 5-8 Mbps

For comparison: Strong symmetric encryption (AES-256): 13.6 billion bits/sec

Real-world solution – I have 100 MB I want to send:
Step 1: Create a random 256-bit (32 byte) key for symmetric cryptography

Called the “session key”
Step 2: Encrypt those 256 bits using public-key cryptography (like RSA)

Send to the receiver - now you share a secret with a stranger!
Step 3: Encrypt the 100 MB of data using symmetric cryptography

Fast, fast, fast!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 16 / 26

Some Efficiency Tricks

Trick 1: So use a small e – does need to be random or unguessable

Example 1: e = 3
Only 3 modular multiplications to encrypt!
Need gcd(3,(p−1)(q−1)) = 1

Example 2: e = 65,537 = 216 +1
Encryption in 17 modular multiplications
gcd(65537,(p−1)(q−1)) = 1 more common
This is widely used in practice

So... fast encryption (real world: ≈ 160MBps)
But still need to decrypt (d is large!)

Trick 2: Use Chinese Remainder Theorem to decrypt

Decryption knows private key, so can know p and q
Do powering mod p and mod q
Combine results with CRT to get result mod pq = N

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 17 / 26

Key Generation

Important first step: Find large primes p and q. How?

def getprime(bits):
while True:

x = random.randint(2**(bits-1), 2**bits-1)
if isprime(x): return x

What is isprime? Miller-Rabin primality test!

How long does this take?

Prime Number Theorem: π(N) number of primes less than N. For all
N ≥ 17,

π(N)≥ N/ lnN.

So: Choosing randomly gives approximately 1/(lnN) chance of number being
a prime. Expected number of iterations: lnN (probability? expected? later!)

With p and q the rest is easy!
Used (extended GCD) to find e with gcd(e,(p−1)(q−1)) = 1
extgcd also gives mult inverse mod (p−1)(q−1) – this is d

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 18 / 26

Speed of Breaking RSA
“Can factor efficiently” =⇒ “Can break RSA efficiently”

How? Factor N to get p and q – can compute d from e

Converse?
In other words: Is breaking RSA as hard as factoring?
We don’t know – interesting (and feasibly solvable) open problem
Easy? No - people have been trying to solve for > 40 years

How fast can we factor?
No polynomial-time algorithm known (for a classical computer)

People have been trying for millennia – remember Euclid was 300BC!
But ... no polytime deterministic primality testing until 2002!

GNFS is faster than exponential... slower than polynomial...
Record largest “RSA number” ever factored: 829 bits (completed in 2020)

Or at least... the largest publicly announced
829 bits took 2700 core-years of computing power

Possible game-changer:
Shor’s algorithm: Polynomial-time algorithm on a quantum computer
Real-world danger? Maybe... maybe not... post-quantum crypto...

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 19 / 26

How Does Alice Get Bob’s Key?

What you want to happen:

Alice Bob

Sure! Here's my public encryption key: PuB

E(PuB , CC#)

What you might actually happen:

Alice Bob

Here's my key: PuB

E(PuM , CC#)

Here's my key: PuM

MitM

This is called a “Man in the Middle” (MitM) attack

The core question: How can you trust that key really came from Bob?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 20 / 26

Asymmetric Power

Alice Bob

DecryptionEncryption

KE is public
Anyone can encrypt

KD is private
Only Bob can encrypt

Asymmetric – only Bob can do what the receiver needs to do.

What if... the sender had a unique power?
Could verify that a message came from the sender (only they could...)
This is a digital signature

Alice Bob

VerificationSignature

KS is private
Only Alice can sign

KV is public
Anyone can Verify

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 21 / 26

Signatures using RSA.
Key Generation:

Pick two large primes p and q
Compute N = pq

Messages are from {0,1, . . . ,N −1}
Encryption/decryption work mod N

Pick s relatively prime to (p−1)(q−1)
Compute v = s−1 (mod (p−1)(q−1))
Now KS = (s,N) (private)
And KV = (v ,N) (public)

Signing:
σ = S(KS ,M) = Ms mod N

Verification:
V (KV ,M,σ) = Test if M

?≡ σv mod N

Idea: Only signer (with knowledge of s) could produce σ that works

Note: RSA signing is same as RSA decryption – peculiar to RSA
Not actually true in practice (signed message padded...)
Other signature schemes (DSS, ECC, ...) don’t work like this

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 22 / 26

Certificate Authorities

Alice

Bob

Here's my certified key: (Bob,PuB), σCA

E(PuB , CC#)

Trusted 3rd Party
(Certificate Authority)

Could you certify my key PUB?

(Verifies identity)
OK, here: σCA = S(PrCA, (Bob,PuB))

... Later

(Verifies σCA with PuCA)

Pu
CA

Problem: Alice needs a reliable copy of PUCA – chicken and egg?
Browsers ship with trusted CA verification keys
You need to trust your browser (but you need to trust the browser anyway!)

Note: Certificate authorities have been fooled!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 23 / 26

Another Use of Digital Signatures

Alice

Sure! Here's a random number, R

Sends signature S(PrA , R)

I want to log in -- I'm Alice

Verifies signature: V(PuA, R, s)
User DB:
 Alice: PUA
 Bob: PUB
 ...

Advantages over passwords:
Server never has sensitive info
Can’t accidentally tell someone pw

Disadvantages:
Must have software support
Must store private keys securely

Real world uses:
SSH with public key auth
Passkeys for web logins

Browsers didn’t implement for a while
Now decent uptake

Secure private key storage:
Unlocked with biometric
Note: Not using bio to log in!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 24 / 26

Elegant Idea – Not Used Exactly...

Beautiful math, but....

What we’re describing isn’t (quite) what is used in practice
Sometimes called “Textbook RSA”
NOT secure in the real world!

What was described: deterministic encryption/cryptography
Same ciphertext for same plaintext every time
This is very bad – can recognize repeats, can replay ciphertexts, ...

So in the real world:
Random padding and checks included
For encryption: OAEP (Optimal Asymmetric Encryption Padding)
For signing: PSS (Probabilistic Signature Scheme)

More real-world issues? Take CS 161!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 25 / 26

Summary

Public-Key Cryptography
Basic idea: Asymmetric power of parties and keys (public vs private)
Used for confidentiality (encryption) and integrity (signatures)

Cool and historically important public-key scheme: RSA
Works due to all the things we have been discussing!

Modular arithmetic, Fermat’s Little Theorem, Chinese Remainder Theorem, ...
Efficiency: Repeated squaring, small e, CRT for decryption

Some warnings/caveats:
Understanding this math doesn’t make you a cryptography expert

Many real-world problems – modifications made
Always use a robust, well-tested cryptographic library

Modern threats to RSA (and related algorithms)
Quantum computing

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 26 / 26

