
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Course Notes Note 22

Finite Markov Chains
This note gives a brief introduction to the theory of finite Markov chains, omitting some proofs. This topic
has many applications and will be revisited in several higher-level courses.

1 Introduction
Markov chains are models of random motion in a finite or countable set. These models are powerful because
they capture a vast array of systems that we encounter in applications. Yet, the models are simple in that
many of their properties can often be determined using elementary matrix algebra. In this course, we limit
the discussion to the case of finite Markov chains, i.e., motions in a finite set.

Imagine the following scenario. You flip a fair coin until you get two consecutive ‘heads’. How many times
do you have to flip the coin, on average? You roll a balanced six-sided die until the sum of the last two rolls
is 8. How many times do you have to roll the die, on average?

As another example, say that you play a game of ‘heads or tails’ using a biased coin that yields ‘heads’ with
probability 0.48. You start with $10. At each step, if the flip yields ‘heads’, you earn $1. Otherwise, you
lose $1. What is the probability that you reach $100 before $0? How long does it take until you reach either
$100 or $0?

You try to go up a ladder that has 20 rungs. At each time step, you succeed in going up by one rung with
probability 0.9. Otherwise, you fall back to the ground. How many time steps does it take you to reach the
top of the ladder, on average?

You look at a web page, then select randomly one of the links on that page, with equal probabilities. You
then repeat on the next page you visit, and so on. As you keep browsing the web in this way, what fraction
of the time do you open a given page? How long does it take until you reach a particular page? How likely
is it that you visit a given page before another given page?

These questions can all be answered using the methods of Markov chains, as we explain in this note.

2 A First Example

0 11−a 1−a

a

a

Figure 1: A simple Markov chain

Figure 1 illustrates a simple Markov chain. It describes a random motion in the set {0,1}. The position
at time n = 0,1,2, . . . is Xn ∈ {0,1}. We call Xn the state of the Markov chain at step (or time) n. The set
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{0,1} is the state space, i.e., the set of possible values of the state. The motion, i.e., the time evolution, of
Xn follows the following rules. One is given a number a ∈ [0,1] and two nonnegative numbers π0(0) and
π0(1) that add up to 1. Then,

P[X0 = 0] = π0(0) and P[X0 = 1] = π0(1). (1)

That is, the initial state X0 is equal to 0 with probability π0(0), otherwise it is 1. Then for n ≥ 0,

P[Xn+1 = 0 | Xn = 0,Xn−1, . . . ,X0] = 1−a (2)

P[Xn+1 = 1 | Xn = 0,Xn−1, . . . ,X0] = a (3)

P[Xn+1 = 0 | Xn = 1,Xn−1, . . . ,X0] = a (4)

P[Xn+1 = 1 | Xn = 1,Xn−1, . . . ,X0] = 1−a (5)

Figure 1 summarizes the rules (2)–(5). These rules specify the transition probabilities of the Markov chain.
Rules (2)–(3) specify that if the Markov chain is in state 0 at step n, then at the next step it stays in state 0
with probability 1−a and it moves to state 1 with probability a, regardless of what happened in the previous
steps. Rules (4)-(5) are similar. Figure 1 is called the state transition diagram of the Markov chain. It
captures the transition probabilities in a graphical form.

The key property of a Markov chain is that it is amnesic: at step n, it forgets what it did before getting to the
current state and its future steps depend only on that current state. Here is one way to think of the rules of
motion. When the Markov chain gets to state 0, it flips a coin with heads probability a. If the outcome is H
then it goes to state 1; otherwise, it stays in state 0 and flips the coin again. The situation is similar when the
Markov chain gets to state 1.

An equivalent, more compact way of describing a Markov chain is its transition probability matrix P, which
for the above chain is given by

P(0,0) = 1−a; P(0,1) = a;

P(1,0) = a; P(1,1) = 1−a.

That is,

P =

[
1−a a

a 1−a

]
.

Hence,
P[Xn+1 = j | Xn = i, Xn−1, . . . , X0] = P(i, j), for n ≥ 0 and i, j ∈ {0,1}.

Figure 2 shows some simulations of the Markov chain with different values of a. When a= 0.1, it is unlikely
that the state of the Markov chain changes in one step. As the figure shows, the Markov chain spends many
steps in one state before switching. For larger values of a, the state of the Markov chain changes more
frequently. Note that, by symmetry, over the long term the Markov chain spends half of the time in each
state. (More about this phenomenon later.)

3 A Second Example
Figure 3 shows the state transition diagram of a small web browsing experiment. Each state in the figure
represents a web page. The arrows out of a state correspond to links on the page that point to other pages.
The transition probabilities are not indicated on the figure, but the model is that each outgoing link from a
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Figure 2: Simulations of the two-state Markov chain
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Figure 3: A five-state Markov chain. The outgoing arrows are equally likely.

particular page is equally likely. The figure corresponds to the following probability transition matrix, with
rows/columns indexed by states A,B,C,D,E, respectively:

P =


0 1

2 0 1
2 0

0 0 1 0 0
1 0 0 0 0
1
3

1
3 0 0 1

3

0 1
2

1
2 0 0

 .

Figure 4 shows a simulation of the five-state Markov chain.
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Figure 4: Simulation of the five-state Markov chain.
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4 Finite Markov Chains
We define a general finite Markov chain as follows. The state space is X = {1,2, . . . ,K} for some finite K.
The transition probability matrix P is a K ×K matrix such that

P(i, j)≥ 0, ∀i, j ∈ X

and
K

∑
j=1

P(i, j) = 1, ∀i ∈ X .

The initial distribution is a vector π0 = {π0(i) | i ∈ X } where π0(i)≥ 0 for all i ∈ X and ∑i∈X π0(i) = 1.
(In many applications, π0 is concentrated on a single state, i.e., π0(i) = 1 for some i, which corresponds to
starting deterministically in state i.)

One then defines the random sequence {Xn | n = 0,1,2, . . .} by

P[X0 = i] = π0(i), ∀i ∈ X ;

P[Xn+1 = j | Xn = i,Xn−1, . . . ,X0] = P(i, j), ∀n ≥ 0,∀i, j ∈ X .

Note that

P[X0 = i0,X1 = i1, . . . ,Xn = in]

= P[X0 = i0]P[X1 = i1 | X0 = i0]P[X2 = i2 | X0 = i0,X1 = i1] · · ·P[Xn = in | X0 = i0, . . . ,Xn−1 = in−1]

= π0(i0)P(i0, i1) · · ·P(in−1, in).

Consequently,

P[Xn = in] = ∑
i0,...in−1

P[X0 = i0,X1 = i1, . . . ,Xn = in]

= ∑
i0,...in−1

π0(i0)P(i0, i1) · · ·P(in−1, in)

= [π0Pn](in),

where the last expression denotes the in component of the product of the row vector π0 times the nth power
of the matrix P.

Thus, if we designate by πn the distribution of Xn, so that P[Xn = i] = πn(i), then the last derivation proves
the following result.

Theorem 22.1. For all n ≥ 0, one has
πn = π0Pn.

In particular, if π0(i) = 1 for some i, then πn( j) = Pn(i, j) = P[Xn = j | X0 = i].

For the two-state Markov chain in Figure 1, one can verify that (see Appendix for details)

Pn =

[
1−a a

a 1−a

]n

=

[
1
2 +

1
2(1−2a)n 1

2 −
1
2(1−2a)n

1
2 −

1
2(1−2a)n 1

2 +
1
2(1−2a)n

]
. (6)

Note that if 0 < a < 1,

Pn →

[
1
2

1
2

1
2

1
2

]
as n → ∞.

Consequently, for 0 < a < 1, one has πn = π0Pn →
[1

2
1
2

]
as n → ∞, which means that after a long time

the chain is equally likely to be in either of the two states.
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5 Invariant Distribution
The following definition introduces the important notion of invariant distribution.

Definition 22.1. A distribution π is invariant for the transition probability matrix P if it satisfies the following
balance equations:

π = πP. (7)

The relevance of this definition is stated in the next result.

Theorem 22.2. One has πn = π0 for all n ≥ 0 if and only if π0 is invariant.

Proof. If πn = π0 for all n ≥ 0, then π0 = π1 = π0P, so that π0 satisfies (7) and is thus invariant.

If π0P = π0, then π1 = π0P = π0. And similarly, by induction, we get that πn = πn−1P = π0P = π0.

For instance, in the case of the two-state Markov chain, the balance equations are

π(0) = π(0)(1−a)+π(1)a;

π(1) = π(0)a+π(1)(1−a).

Each of these two equations is equivalent to

π(0) = π(1).

Thus, the two equations are redundant. If we add the condition that the components of π add up to one, we
find that the only solution is

[
π(0) π(1)

]
=
[1

2
1
2

]
, which is not surprising in view of symmetry.

For the five-state Markov chain, the balance equations are

[
π(A) π(B) π(C) π(D) π(E)

]
=
[
π(A) π(B) π(C) π(D) π(E)

]


0 1
2 0 1

2 0
0 0 1 0 0
1 0 0 0 0
1
3

1
3 0 0 1

3

0 1
2

1
2 0 0

 .

Once again, these five equations in the five unknowns are redundant: they do not determine π uniquely.
However, if we add the condition that the components of π add up to one, then we find that the solution is
unique and given by (see the Appendix for the calculations):[

π(A) π(B) π(C) π(D) π(E)
]
=

1
39

[
12 9 10 6 2

]
. (8)

Thus, in this web-browsing example, in the long term page A is visited most often, then page C, then page
B. A Google search would return the pages in order of most frequent visits, i.e., in the order A, C, B, D, E.
This ranking of the pages is called PageRank and can be determined by solving the balance equations. (In
fact, the actual ranking by Google combines the estimate of π with other factors.)

How many invariant distributions does a Markov chain have? We have seen that for the two examples, the
answer was one. However, that is not always the case. For instance, consider the two-state Markov chain
with a = 0 instead of 0 < a < 1 as we assumed previously. This Markov chain does not change state. Its
transition probability matrix is P = I where I denotes the identity matrix. Since πI = π for any vector π , we
see that any distribution is invariant for this Markov chain.

However, we will see in the next section that two simple conditions guarantee the uniqueness of the invariant
distribution.
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6 Convergence to the Invariant Distribution
In this section, we will state (without proof) the so-called Fundamental Theorem of Markov Chains, which
says that, under mild conditions, a finite Markov chain will always converge, as time tends to infinity, to a
unique invariant distribution, regardless of its initial state. This implies that, in the long term, the probability
of finding the chain in any given state has a certain fixed value that doesn’t change over time.

To guarantee this nice behavior, we need two conditions. The first is known as irreducibility.

Definition 22.2 (Irreducible). A Markov chain is irreducible if it can go from every state i to every other
state j in a finite number of steps.

We can picture this condition graphically as follows. For a Markov chain to be irreducible, its state transition
diagram must be “strongly connected”, i.e., there must exist a directed path of transitions (each with non-
zero probability) from every state i to every state j. For example, the two-state Markov chain in Figure 1
is irreducible for all 0 < a ≤ 1, but not for a = 0. And the Markov chain in Figure 3 is irreducible. Note
that irreducibility is a necessary condition for convergence, since otherwise there will be states that are
unreachable from some initial states, which will therefore never be visited.

The second condition we need is aperiodicity, which basically rules out “parity” or “cycling” issues.

Definition 22.3 (Aperiodic). A Markov chain is aperiodic if for all pairs of states i, j we have

gcd{n > 0 : Pn(i, j)> 0}= 1. (9)

Let’s parse this definition a bit. The set of values n in the gcd expression are exactly the lengths of all the
(not necessarily simple) paths from i to j in the Markov chain. (Why?) So the aperiodicity property is saying
that these path lengths do not have any kind of periodic behavior, where, e.g., all the paths from i to j have
even length and the gcd in equation (9) is 2. A very simple example of a chain with this periodic behavior
is the 2-state example in Figure 1 when a = 1. Here, the chain just bounces back and forth between the two
states at every step. Thus all paths from state 0 to state 0 are of even length. This means that, if X0 = 0, then
Xn = 0 for all even n, and Xn = 1 for all odd n, so no convergence to an invariant distribution is possible. On
the other hand, the Markov chain in Figure 3 is aperiodic: to see this, note that there are paths of length 2
and 3 from A back to itself, so gcd{n > 0 : Pn(A,A) > 0} = 1. And now, since the chain is irreducible,
we can go from any state i to any state j via A, using a path of some length k (say). Now inserting a path
of length 2 or 3 from A back to itself into this path gives us paths of lengths k+ 2 and k+ 3 from i to j,
confirming that gcd{n > 0 : Pn(i, j) > 0} = 1. (This argument shows that it’s enough for aperiodicity to
show that gcd{n > 0 : Pn(i, i)> 0}= 1 for any single state i.)

We are now ready to state the main convergence theorem.

Theorem 22.3 (Fundamental Theorem of Markov Chains). For any finite, irreducible, aperiodic Markov
chain, the probability distribution at time n for any initial state X0 converges to π , where π is the unique
invariant distribution and π(i)> 0 for all states i. In other words, for any X0 and any state i, P[Xn = i]→ π(i)
as n → ∞.

There are several alternative proofs of this theorem, all of which are beyond the scope of the course. How-
ever, we will briefly discuss some sample applications.

First, recall that the chain in Figure 1 with 0 < a < 1 is aperiodic and irreducible with invariant distribu-
tion

[1
2

1
2

]
. Thus P[Xn = 0] → 1

2 as n → ∞, and similarly for P[Xn = 1], regardless of where we start.
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Second, we have seen that the chain in Figure 3 is aperiodic and irreducible with invariant distribution
1
39

[
12 9 10 6 2

]
. Thus, e.g., as n → ∞, P[Xn = D]→ 6

39 .

For a more interesting example, consider the problem of shuffling a deck of 52 cards. Here our goal is to
construct a uniform distribution over all 52! permutations of the deck (a huge number, around 8× 1067).
How do we achieve this feat? We can model the shuffling process as a Markov chain whose states are these
52! permutations, and whose transitions correspond to the kind of “riffle shuffles” that card players perform.
To model real-life shuffling, we would need a mathematical model of these riffles, which does exist but
is a little tricky to describe. Instead, we’ll consider a “slow” shuffle in which, at each step, we pick two
random cards (with replacement) in the current deck and switch their positions. We claim that this shuffle is
aperiodic and irreducible and that its invariant distribution is uniform.

The fact that it’s irreducible follows from the standard fact that any permutation can be written as a sequence
of transpositions (i.e., switches of two cards); thus we can get from any permutation to any other one via
a sequence of our simple card switching operations. To see that it’s aperiodic, note that P(i, i) > 0 for any
state i (because we could pick the same card, meaning that nothing happens); this means that gcd{n > 0 :
Pn(i, i) > 0} = 1 for all i, so as before the chain is aperiodic. Finally, to see that the invariant distribution
is uniform, we note that the transition matrix P is symmetric, i.e., P(i, j) = P( j, i) for all i, j; this follows
because either the permutations i, j differ by the transposition of just two cards, c,c′ (say), in which case
P(i, j) = P( j, i) = 2

522 because both transitions are effected by picking cards c and c′ (in either order); or they
don’t, in which case P(i, j) = P( j, i) = 0. Now any irreducible, aperiodic Markov chain that is symmetric
has uniform invariant distribution, as we can easily check from the balance equations, as follows. We need
to verify that the uniform distribution π(i) = 1

N satisfies the balance equations π( j) = [πP]( j), where in this
case N = 52!. But

[πP]( j) = ∑
i

π(i)P(i, j) = ∑
i

1
N

P( j, i) =
1
N

= π( j),

where in the second equality we used the symmetry of P and in the third equality we used the fact that
∑i P( j, i) = 1.

Putting all this together gives us the following perhaps surprising conclusion: if you start from any ordering
of the deck, and perform enough random switches of pairs of cards, then you will eventually reach an
(almost) perfectly shuffled deck! The same holds for mathematical models of the shuffles used in casinos
(namely, the “riffle” or “dovetail” shuffle), which reach the uniform distribution after fewer steps. (For
professional dealers, it is generally accepted that 7 riffle shuffles achieve a deck that is shuffled well enough
that even professional card players cannot exploit any remaining structure.)

7 Random Walk on an Undirected Graph
A class of Markov chains that arises very often in practice are known as random walks on graphs. Let
G = (V,E) be an undirected graph, as we have seen earlier in the class. Define a Markov chain as follows:
the state space is V (the vertices of the graph), and at each step, if the process is at v, it moves to a neighbor u
of v chosen uniformly at random.
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A B C

D E F

Figure 5: An undirected graph on six vertices. To interpret this as the transition diagram of a Markov chain,
view each undirected edge as a pair of directed edges, one in each direction. Transition probabilities for all
edges out of a given vertex are equal.

Figure 5 shows a simple example. For this graph, you should check that the transition matrix of the random
walk is

P =



0 1
3 0 1

3
1
3 0

1
3 0 1

3 0 1
3 0

0 1
2 0 0 1

2 0
1
2 0 0 0 1

2 0
1
5

1
5

1
5

1
5 0 1

5
0 0 0 0 1 0


.

What can we say about random walk on a graph? First, it should be clear that the process is irreducible if
and only if G is connected (since that corresponds precisely to the condition that there is a path from every
vertex to every other vertex). Second, the random walk is aperiodic if and only if the graph is not bipartite.
(You may like to prove this: the “only if” direction is easy, while the “if” direction follows from the fact that
a non-bipartite graph must contain a cycle of odd length.) So, assuming G is connected and not bipartite,
the random walk on G converges to a unique invariant distribution.

What is that distribution? We claim that it has a very nice form, namely

π(v) =
deg(v)

D
, (10)

where deg(v) denotes the degree of vertex v and D = ∑v∈V deg(v). (D here is just a normalizing factor to
make the probabilities sum to 1. Note that in fact D = 2|E|.) To prove this we just have to verify that π as
defined in (10) satisfies the balance equations [πP](v) = π(v) for all v. This follows from

[πP](v) = ∑
u:{u,v}∈E

π(u)P(u,v) = ∑
u:{u,v}∈E

deg(u)
D

× 1
deg(u)

= ∑
u:{u,v}∈E

1
D

=
deg(v)

D
= π(v).

In the second equality here, we used the fact that P(u,v) = 1
deg(u) for all neighbors v of u.

Thus we see that, for random walk on a (connected, non-bipartite) graph, the probability of finding the walk
in a given vertex v after many steps is proportional to deg(v). For the example graph in Figure 5, these
proportions are

π(A) =
3
16

; π(B) =
3

16
; π(C) =

2
16

; π(D) =
2
16

; π(E) =
5

16
; π(F) =

1
16

.
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8 Hitting Time
Consider the Markov chain in Figure 3. Assume it starts in state A. What is the average number of steps
until it reaches state E for the first time? To calculate this average time, for i ∈ {A,B,C,D,E} define β (i) to
be the average time until the Markov chain reaches state E given that it starts from state i.

Thus, β (E) = 0 since it takes 0 steps to reach E when starting in state E. We want to calculate β (A).
However, it turns out that to calculate β (A), one also has to calculate β (B), . . . ,β (D). We do this by finding
equations that these quantities satisfy and then solving these equations.

We claim that
β (A) = 1+

1
2

β (B)+
1
2

β (D). (11)

To see this, note that when the Markov chain starts in state A, it stays there for one step. Then, with
probability 1

2 it moves to state B. In that case, the average time until it reaches E is β (B). With probability
1/2, the Markov chain moves to state D and then takes β (D) steps (on average) to reach E. Thus, the time
to reach E starting from state A is 1 step plus an average of β (B) steps with probability 1

2 and an average of
β (D) steps with probability 1

2 . Equation (11) captures this decomposition.

An identity similar to (11) can be written for every starting state. We find

β (A) = 1+
1
2

β (B)+
1
2

β (D)

β (B) = 1+β (C)

β (C) = 1+β (A)

β (D) = 1+
1
3

β (A)+
1
3

β (B)+
1
3

β (E)

β (E) = 0

These equations are called the first step equations.

Solving these equations, we find (see the Appendix for the calculations):

β (A) = 17 β (B) = 19 β (C) = 18 β (D) = 13 β (E) = 0 (12)

Let us now consider a general finite Markov chain with transition probability matrix P on the state space
X . Let A ⊂ X be a set of states. For each i ∈ X , let β (i) be the average number of steps until the Markov
chain enters one of the states in A, given that it starts in state i.

Then one has the first step equations

β (i) = 0 if i ∈ A

β (i) = 1+ ∑
j∈X

P(i, j)β ( j) otherwise.

As another example, consider the Markov chain in Figure 1. Let β (i) be the average number of steps until
the Markov chain enters state 1, starting in state i. The first step equations are

β (0) = 1+(1−a)β (0)+aβ (1)

β (1) = 0

Solving, we find β (0) = 1
a . Note that the time to enter state 1 starting from state 0 is the number of times

one has to flip a biased coin with P[H] = a until the first heads. This number of steps has a geometric
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Figure 6: Flipping a fair coin until two heads in row.

distribution with parameter a. Thus, we have rediscovered the fact that the mean value of a Geometric(a)
random variable is 1

a .

Now suppose you flip a fair coin repeatedly until you get two heads in a row. How many times do you have
to flip the coin, on average? Figure 6 shows a state transition diagram that corresponds to this situation. The
Markov chain starts in state S. The state is H or T if the last coin flip was H or T , respectively, except that
the state is E if the last two flips were heads. This state E is absorbing, i.e., P(E,E) = 1 (the chain never
leaves it). For i ∈ {S,T,H,E}, let β (i) be the average number of steps until the Markov chain enters state
E. The first step equations are

β (S) = 1+
1
2

β (T )+
1
2

β (H)

β (T ) = 1+
1
2

β (T )+
1
2

β (H)

β (H) = 1+
1
2

β (T )+
1
2

β (E)

β (E) = 0

Solving, we find
β (S) = 6 (13)

(See the Appendix for the calculations.)

Consider now the 20-rung ladder. A man starts on the ground. At each step, he moves up one rung with
probability p and falls back to the ground otherwise. Let β (i) be the average number of steps needed to
reach the top rung, starting from rung i ∈ {0,1, . . . ,20} where rung 0 refers to the ground. The first step
equations are

β (i) = 1+(1− p)β (0)+ pβ (i+1), i = 0, . . . ,19

β (20) = 0

Solving, we find

β (0) =
p−20 −1

1− p
(14)

(See the Appendix for the calculations.) For instance, if p = 0.9, then β (0) ≈ 72. Also, if p = 0.8, then
β (0)≈ 429. The moral of the story is that you should be careful on a ladder!
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9 Probability of A before B

Let Xn be a finite Markov chain with state space X and transition probability matrix P. Let also A and B
be two disjoint subsets of X . We want to determine the probability α(i) that, starting in state i, the Markov
chain enters one of the states in A before one of the states in B.

The first step equations for α(i) are

α(i) = ∑
j

P(i, j)α( j), ∀i /∈ A∪B

α(i) = 1, ∀i ∈ A

α(i) = 0, ∀i ∈ B

To see why the first set of equations hold, we observe that the event that the Markov chain enters A before
B starting from i is partitioned into the events that it does so by first moving to state j, for all possible value
of j. Now, the probability that it enters A before B starting from i after moving first to j is the probability
that it enters A before B starting from j, because the Markov chain is amnesic. The second and third sets of
equations are obvious.

As an illustration, suppose we play a game of heads-or-tails with a coin such that P[H] = p. For every
heads, your fortune increases by 1 and for every tails, it decreases by 1. Your initial fortune is n. You stop
playing when either you go bankrupt (your fortune reaches zero), or your fortune reaches some target value
M > n. We want to calculate the probability that your fortune reaches M before you go bankrupt. Call this
probability α(n). As usual, we will set up a system of equations to compute α(n) for all n.

The first step equations are

α(n) = (1− p)α(n−1)+ pα(n+1), 0 < n < M

α(M) = 1

α(0) = 0

Solving these equations, we find

α(n) =
1−ρn

1−ρM (15)

where ρ := (1− p)p−1. (See the Appendix for the calculations.) Note that ρ < 1 under the reasonable
assumption that p < 0.5 (so that the casino has an advantage). For instance, with p = 0.48 and M = 100,
we find that α(10) ≈ 4 × 10−4, which is sobering when contemplating a trip to Las Vegas. Note that
for each gambler who plays this game, the Casino makes $10.00 with probability 1− 4× 10−4 and loses
$990.00 with probability 4× 10−4, so that the expected gain of the Casino per gambler is approximately
(1−4×10−4)×$10.00−4×10−4 ×$990.00 ≈ $9.60. Observe that the probability of winning in one step
is 48%, so that if the gamble did bet everything on a single game and stopped after one step, the Casino
would only make 0.52× $10.00− 0.48× $10.00 = $0.40 on average per gambler, instead of $9.60. (Of
course, if p > 0.5 then ρ > 1 and you as the gambler have the advantage; similar conclusions then hold with
the roles of you and the casino reversed.)
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Appendix: Calculations
This section presents the details of the calculations of this note. The actual calculations are not very impor-
tant and are included here for completeness.

Equation (6)

By symmetry, we can write

Pn =

[
1−αn αn

αn 1−αn

]
for some αn that we determine below. Note that α1 = a. Also,

Pn+1 =

[
1−αn+1 αn+1

αn+1 1−αn+1

]
= PPn =

[
1−a a

a 1−a

][
1−αn αn

αn 1−αn

]
.

Consequently, by looking at component (0,1) of this product,

αn+1 = (1−a)αn +a(1−αn) = a+(1−2a)αn.

Let us try a solution of the form αn = b+ cλ n. We need

αn+1 = b+ cλ
n+1

= a+(1−2a)αn

= a+(1−2a)(b+ cλ
n)

= a+(1−2a)b+(1−2a)cλ
n.

Matching the terms, we see that this identity holds if

b = a+(1−2a)b and λ = 1−2a.

The first equation gives b = 1
2 . Hence, αn =

1
2 + c(1−2a)n. To find c, we use the fact that α1 = a, so that

1
2 + c(1−2a) = a, which yields c =−1

2 .

Hence,

αn =
1
2
− 1

2
(1−2a)n.

Equation (8)

The balance equations are π = πP.

We know that the equations do not determine π uniquely. Let us choose arbitrarily π(A) = 1. We then solve
for the other components of π and we renormalize later. We can ignore any equation we choose. Let us
ignore the first one. The new equations are

[
π(B) π(C) π(D) π(E)

]
=
[
1 π(B) π(C) π(D) π(E)

]


1
2 0 1

2 0
0 1 0 0
0 0 0 0
1
3 0 0 1

3
1
2

1
2 0 0

 .
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Equivalently,

[
π(B) π(C) π(D) π(E)

]
=
[1

2 0 1
2 0

]
+
[
π(B) π(C) π(D) π(E)

]


0 1 0 0
0 0 0 0
1
3 0 0 1

3
1
2

1
2 0 0

 .

By inspection, we see that π(D) = 1
2 , then π(E) = 1

3 π(D) = 1
6 , then

π(B) =
1
2
+

1
3

π(D)+
1
2

π(E) =
1
2
+

1
6
+

1
12

=
3
4
.

Finally,

π(C) = π(B)+
1
2

π(E) =
3
4
+

1
12

=
5
6
.

The components π(A) + · · ·+ π(E) add up to 1+ 3
4 +

5
6 +

1
2 +

1
6 = 39

12 . To normalize, we multiply each
component by 12

39 and we get
π =

[12
39

9
39

10
39

6
39

2
39

]
.

We could have proceeded differently and observed that our identity implies that

[
π(B) π(C) π(D) π(E)

]I −


0 1 0 0
0 0 0 0
1
3 0 0 1

3
1
2

1
2 0 0


=

[1
2 0 1

2 0
]

[
π(B) π(C) π(D) π(E)

]
1 −1 0 0
0 1 0 0

−1/3 0 1 −1/3
−1/2 −1/2 0 1

=
[1

2 0 1
2 0

]
Hence,

[
π(B) π(C) π(D) π(E)

]
=
[1

2 0 1
2 0

]
1 −1 0 0
0 1 0 0
−1

2 0 1 −1
3

−1
2 −1

2 0 1


−1

.

This procedure is a systematic way to solve the balance equations by computer.

Equation (12)

Using the third equation in the second, we find β (B) = 2+β (A). The fourth equation then gives

β (D) = 1+
1
3

β (A)+
1
3
(2+β (A)) =

5
3
+

2
3

β (A).

The first equation then gives

β (A) = 1+
1
2
(2+β (A))+

1
2

(
5
3
+

2
3

β (A)
)
=

17
6
+

5
6

β (A).

Hence, 1
6 β (A) = 17

6 , so that β (A) = 17. Consequently, β (B) = 19 and β (D) = 5
3 +

34
3 = 13. Finally,

β (C) = 18.
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Equation (13)

The last two equations give β (H) = 1+ 1
2 β (T ). If we substitute this expression in the second equation, we

get

β (T ) = 1+
1
2

β (T )+
1
2

(
1+

1
2

β (T )
)
=

3
2
+

3
4

β (T ).

Hence, β (T ) = 6. Consequently, β (H) = 1+ 1
2 ·6 = 4. Finally, β (S) = 1+ 1

2 ·6+
1
2 ·4 = 6.

Equation (14)

Let us look for a solution of the form β (i) = a+bλ i. Then

a+bλ
i = 1+(1− p)(a+b)+ p[a+bλ

i+1] = 1+(1− p)(a+b)+ pa+bpλ
i+1.

This identity holds if
a = 1+(1− p)(a+b)+ pa and λ = p−1,

i.e.,
b =−(1− p)−1 and λ = p−1.

Then,
β (i) = a− (1− p)−1 p−i.

Since β (20) = 0, we need
0 = a− (1− p)−1 p−20,

so that a = (1− p)−1 p−20 and

β (i) = (1− p)−1 p−20 − (1− p)−1 p−i =
p−20 − p−i

1− p
.

Equation (15)

We again look for a solution of the form α(n) = aλ n+b for suitable constants a,b,λ . Plugging this into the
first step equations gives

aλ
n +b = (1− p)(aλ

n−1 +b)+ p(aλ
n+1 +b),

which simplifies to
λ

n = (1− p)λ n−1 + pλ
n+1.

Canceling a factor of λ n−1 and rearranging gives the quadratic equation

pλ
2 −λ +(1− p) = 0,

whose solutions are

λ =
1±

√
1−4p(1− p)

2p
=

1± (1−2p)
2p

.

One solution is λ = 1, which is not interesting, so we take λ = 1−p
p =: ρ . To compute a and b, we use the

boundary conditions α(M) = 1 and α(0) = 0, which become

aρ
M +b = 1

a+b = 0.
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Solving gives us a =− 1
1−ρM and b = 1

1−ρM . This yields our final answer

α(n) =
1−ρn

1−ρM .
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