
CS 70 Discrete Mathematics and Probability Theory
Spring 2024 Course Notes Note 4

1 The Stable Matching Problem
In the previous two notes, we discussed several proof techniques. In this note, we apply some of these
techniques to analyze the solution to an important problem known as the Stable Matching Problem, which
we now introduce. The Stable Matching Problem is one of the highlights of the field of algorithms.

Suppose you run an employment system1, and your task is to match up n jobs and n candidates. Each job
has an ordered preference list of the n candidates, and each candidate has a similar list of the n jobs. For
example, consider the case of n = 3, i.e., three jobs at Approximation Inc., Basis Co., and Control Corp., and
three candidates2 Anita, Bridget, and Christine, with the following preference lists (lists are ordered from
most favorable to least favorable):

Jobs Candidates
Approximation Inc. Anita Bridget Christine

Basis Co. Bridget Anita Christine
Control Corp. Anita Bridget Christine

Candidates Jobs
Anita Basis Co. Approximation Inc. Control Corp.

Bridget Approximation Inc. Basis Co. Control Corp.
Christine Approximation Inc. Basis Co. Control Corp.

What you would like to do as head of the employment system is to match each job with a candidate. For
example, two possible matchings are {(Approximation Inc., Anita), (Basis Co., Bridget), (Control Corp.,
Christine)} and {(Approximation Inc., Bridget), (Basis Co., Christine), (Control Corp., Anita)}. However,
you don’t want just any old matching! In order for your employment system to be successful, you wish the
matching to make “everyone happy”, in that nobody can realistically hope to benefit by switching jobs. Can
you do this efficiently?

It turns out that there is indeed an algorithm to achieve this; moreover, it’s remarkably simple, fast, and
widely-used. It’s called the Propose-and-Reject algorithm (a.k.a. the Gale-Shapley algorithm), and we
present it now.

2 The Propose-and-Reject Algorithm
We think of the algorithm as proceeding in “days” to have a clear unambiguous sense of discrete time.

1If you’d like, think of a hypothetical system that could be run by the EECS department for student internships.
2For clarity of exposition in written English, we will use female pronouns for candidates and neutral pronouns for jobs. If we

were to use neutral pronouns for both, there might be confusion between inanimate jobs and living candidates.
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Every Morning: Each job proposes (i.e. makes an offer) to the most preferred candidate on its list who
has not yet rejected this job.

Every Afternoon: Each candidate collects all the offers she received in the morning; to the job offer
she likes best among these, she responds “maybe” (she now has it in hand or on a string), and to the
other offers she says “no” (i.e., she rejects them). (This is just a way for us to virtually model that there
are no “exploding offers” and a job can’t withdraw an offer once an offer is made.)

Every Evening: Each rejected job crosses off the candidate who rejected its offer from its list.

The above loop is repeated each successive day until there are no offers rejected. At that point, each
candidate has a job offer in hand (i.e. on a string); and on this day, each candidate accepts their offered
job (i.e. the job offer she has in hand) and the algorithm terminates.

Let’s understand the algorithm by running it on our example above. The following table shows which jobs
make offers to which candidates on the given day (the jobs in bold are “on a string”):

Days Candidates Offers
Anita Approximation Inc., Control Corp.

1 Bridget Basis Co.
Christine —

Anita Approximation Inc.
2 Bridget Basis Co., Control Corp.

Christine —
Anita Approximation Inc.

3 Bridget Basis Co.
Christine Control Corp.

Thus, the algorithm outputs the matching: {(Approximation Inc., Anita), (Basis Co., Bridget), (Control
Corp., Christine)}.

Before analyzing the algorithm’s properties further, let’s take a moment to ask one of the first questions
you should always ask when confronted with a new concept: Why study stable matchings in the first place?
What makes it and its solution so interesting? For this, we discuss the very real impact of the Gale-Shapley
algorithm on the Residency Match program.

3 The Residency Match
Perhaps the most well-known application of the Stable Matching Algorithm is the residency match program,
which pairs medical school graduates and residency slots (internships) at teaching hospitals. Graduates and
hospitals submit their ordered preference lists, and the stable matching produced by a computer matches
students with residency programs.

The road to the residency match program was long and twisted. Medical residency programs were first
introduced about a century ago. Since interns offered a source of cheap labor for hospitals, soon the number
of residency slots exceeded the number of medical graduates, resulting in fierce competition. Hospitals tried
to outdo each other by making their residency offers earlier and earlier. By the mid-40s, offers for residency
were being made by the beginning of junior year of medical school, and some hospitals were contemplating
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even earlier offers — to sophomores3! The American Medical Association finally stepped in and prohibited
medical schools from releasing student transcripts and reference letters until their senior year. This sparked
a new problem, with hospitals now making “short fuse” offers to make sure that if their offer was rejected
they could still find alternate interns to fill the slot. Once again the competition between hospitals led to an
unacceptable situation, with students being given only a few hours to decide whether they would accept an
offer.

Finally, in the early 1950’s, this unsustainable situation led to the centralized system called the National
Residency Matching Program (N.R.M.P.) in which the hospitals ranked the residents and the residents ranked
the hospitals. The N.R.M.P. then produced a pairing between the applicants and the hospitals, though at first
this pairing was not stable. It was not until 1952 that the N.R.M.P. switched to the Propose-and-Reject
Algorithm, resulting in a stable matching.

Finally, if the above still hasn’t convinced you of the worth of this algorithm, consider this: In 2012, Lloyd
Shapley and Alvin Roth won the Nobel Prize in Economic Sciences by extending the Propose-and-Reject
Algorithm. (The moral of the story? Careful modeling with appropriate abstractions pays off.)

4 Properties of the Propose-and-Reject Algorithm
There are two properties we wish to show about the propose-and-reject algorithm: First, that it doesn’t run
forever, i.e., it halts; and second, that it outputs a “good” (i.e., stable) matching. The former is easy to show;
let us do it now.

Lemma 4.1. The propose-and-reject algorithm always halts.

Proof. The argument is simple: On each day that the algorithm does not halt, at least one job must eliminate
some candidate from its list (otherwise the halting condition for the algorithm would be invoked). Since
each list has n elements, and there are n lists, this means that the algorithm must terminate in at most n2

iterations (days).

Next, we’d like to show that the algorithm finds a “good” matching. Before we do so, let’s clarify what we
mean by “good”.

4.1 Stability
What properties should a good matching have? Perhaps we’d like to maximize the number of first ranked
choices? Alternatively, we could minimize the number of last ranked choices. Or maybe it would be ideal to
minimize the sum of the ranks of the choices, which may be thought of as maximizing the average happiness.

In this lecture we will focus on a much more basic criterion that is rooted in the idea of autonomy, namely
stability. A matching is unstable4 if there is a job and a candidate who both prefer working with each
other over their current matchings. We will call5 such a pair a rogue couple. So a matching of n jobs and n
candidates is stable if it has no rogue couples. Let us now recall our example from earlier:

3Any resemblance to the frustration experienced by Berkeley students seeking internships in the summer and having to interview
in the fall is not coincidental.

4Why is this called “unstable?” Because in such a situation, the rogue candidate could just renege on their official offer and
the rogue job/employer could just fire the person that they officially hired to hire their preferred rogue candidate instead. Then one
job is suddenly empty and one innocent person just got fired. This is not what we want to see happening. We want everyone to be
happy enough that they all want to follow through on their final accepted offers.

5The choice of words for definitions is something that requires a balance of considerations. On the one hand, definitions in
mathematical English have to be precise and unambiguous, and so to a computer, it doesn’t matter what specific English words
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Jobs Candidates
Approximation Inc. Anita Bridget Christine

Basis Co. Bridget Anita Christine
Control Corp. Anita Bridget Christine

Candidates Jobs
Anita Basis Co. Approximation Inc. Control Corp.

Bridget Approximation Inc. Basis Co. Control Corp.
Christine Approximation Inc. Basis Co. Control Corp.

Concept check! Consider the following matching for the example above: {(Approximation Inc., Christine),
(Basis Co., Bridget), (Control Corp., Anita)}. Why is this matching unstable? (Hint: Approximation Inc.
and Bridget are a rogue couple — why?)

Here is a stable matching for our example: {(Basis Co., Anita), (Approximation Inc., Bridget), (Control
Corp., Christine)}. Why is (Approximation Inc., Anita) not a rogue couple here? It’s certainly true that
Approximation Inc. would rather work with Anita than its current employee Bridget. Unfortunately for
it, however, Anita would rather be with her current employer (Basis Co.) than with Approximation Inc..
Note also that both Control Corp. and Christine are paired with their least favorite choice in this matching.
Nevertheless, this does not violate stability since none of their more preferred choices would rather work
with them than who they are matched with.

Before we discuss how to find a stable matching, let us ask a more basic question: Do stable matchings
always exist? Surely the answer is yes, since we could start with any matching and seemingly make it more
and more stable as follows: If there is a rogue couple, modify the current matching so that this couple is
matched up. Repeat. Surely this procedure must result in a stable matching? Unfortunately this reasoning
is not sound! Why? Although pairing up the rogue couple reduces the number of rogue couples by one, it
may also create new rogue couples. So it is not at all clear that this procedure will terminate!

Let’s further illustrate the fallacy of the reasoning above by applying it to a closely related scenario known
as the Roommates Problem. In this problem, we have 2n people who must be paired up to be roommates (the
difference being that unlike in our view of stable matching with asymmetric partners of different types, a
person can be paired with any of the other 2n−1 people, i.e., there is no asymmetry in types). Now, suppose
our approach of iteratively matching up rogue couples indeed did work. Since this approach does not exploit
the asymmetry, we can apply it to the roommates problem. Thus, by the (flawed) reasoning above, we could
conclude that there must always exist a stable matching for roommates. Wouldn’t you be surprised then to
read the following counterexample, which gives an instance of the roommates problem which does not have
a stable matching!

we use for the definition. But our definitions are going to be used by humans, and we would like to allow people to leverage their
intuition, etc. At the same time, we want the definitions to not be too cumbersome to use. Here, there is often a balancing act that
we must follow between over-triggering the incredibly nuanced set of human intuitions and having concise wording. In this case,
human intuition would suggest potentially rogue couple instead of rogue couple to be more accurate, since they aren’t actually
matched up to each other. However, since “potentiality” isn’t something we want to model more fully, we just go with the more
concise wording.
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Roommates
A B C D
B C A D
C A B D
D — — —

We claim that in this instance, there always exists a rogue couple for any matching. For example, the
matching {(A,B), (C,D)} contains the rogue couple B and C. How about {(B,C), (A,D)}? This matching is
unstable because now A and C are a rogue couple.

Concept check! Verify that in this example there is no stable matching!

We conclude that any proof that there always exists a stable matching in the stable matching problem must
use the fact that there are two different types6 in an essential way. In the next section we give such a proof,
and a comforting one at that: We prove that there must exist a stable matching because the propose-and-
reject algorithm always outputs one!

4.2 Analysis
We now prove that the propose-and-reject algorithm always outputs a stable matching. Why should this be
the case? Consider the following intuitive observation:

Observation 4.1. Each job begins the algorithm with its first choice being a possibility; as the algorithm
proceeds, however, its best available option can only get worse over time. In contrast, each candidate’s
offers can only get better with time.

Thus, as the algorithm progresses, each job’s options get worse, while each candidate’s improves; at some
point, the jobs and the candidates must “meet” in the middle, and intuitively such a matching should be
stable.

Let us formalize this intuition beginning with a formal statement of Observation 4.1 via the following lemma.

Lemma 4.2 (Improvement Lemma). If job J makes an offer to candidate C on the kth day, then on every
subsequent day C has a job offer in hand (on a string) which she likes at least as much as J.

Proof. We proceed by induction on the day i, with i ≥ k.

Base case (i = k): On day k, C receives at least one offer (from J). At the end of day k, she will therefore
have an offer in hand either from J or a job she likes more than J, since she chooses the best among her
offers.

Inductive Hypothesis: Suppose the claim is true for some arbitrary i ≥ k.

Inductive Step: We prove the claim for day i+ 1. By the Induction Hypothesis, on day i, C had an offer
from job J′ on a string which she likes at least as much as J. (Note that J′ may be J.) According to the
algorithm, J′ proposes again to C again on day i+1 (since this job offer hasn’t yet been rejected by her and

6For historical reasons that relate to how cable connectors and fasteners are described in mechanical systems, as well as how
linguistics denotes grammatical types on nouns, this category of types is sometimes referred to using the technical term gender.
You might see references to gender in the literature if you look up stable matchings. However, what matters here is that we need to
match up two different kinds of things. It doesn’t have to be jobs and candidates. It could packets and network ports, computational
jobs and servers, threads and cores, students and slots in classes, etc. As long as the two things are different in nature.
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is not allowed to explode). Therefore, at the end of day i+ 1, C will have on a string either J′ or an offer
from a job she likes more than J′; in both cases, she likes this job at least as much as J. Hence the claim
holds for day i+1, completing the inductive step.

Detour: The Well-Ordering Principle. Let’s take a moment to consider an alternate proof of Lemma 4.2;
in the process, we’ll uncover a fundamental principle which is equivalent to induction.

Alternate proof of Lemma 4.2. As in our original proof, the claim certainly holds on day i = k. Suppose
now, for the sake of contradiction, that the ith day for i > k is the first counterexample where C has either
no offer or an offer from some J∗ inferior to J on a string. On day i−1, she had an offer from some job J′

on a string and liked J′ at least as much as J. According to the algorithm, J′ still has an offer out to C on the
ith day. (i.e. offers don’t explode and can’t be withdrawn) So C has the choice of at least one job (J′) on the
ith day; consequently, her best choice must be at least as good as J′, and therefore certainly better than J∗ or
nothing. This contradicts our initial assumption.

What proof technique did we use to prove this lemma? Is it contradiction? Or some other beast entirely? It
turns out that this is also a proof by induction! Why? Well, we began by establishing the base case of i = k.
Next, instead of proving that for all i, P(i) =⇒ P(i+ 1), we showed that the negation of this statement is
false, i.e., that “there exists i such that ¬(P(i) =⇒ P(i+1))” does not hold; thus, by the law of the excluded
middle, it must indeed hold that for all i, P(i) =⇒ P(i+1).

Concept check! Ensure you understand why these two proofs are equivalent.

Let us now be a bit more careful — what exactly allowed us to take this alternate approach? The answer lies
in a very special property of the natural numbers known as the Well-Ordering Principle. This principle says
that any non-empty set of natural numbers contains a “smallest” element. Formally:

Definition 4.1 (Well-ordering principle). If S ⊆ N and S ̸= /0, then S has a smallest element.

Concept check! Consider the following subsets of the natural numbers: S1 = {5,2,11,7,8}, S2 = {n ∈ N :
n is odd}, S3 = {n ∈ N : n is prime}. Does each of these sets have a smallest element?

Where did we use the well-ordering principle in our proof? In the line “Suppose. . . that the ith day for i > k
is the first counterexample. . . ” — specifically, if the natural numbers did not obey this principle, then the
notion of a first counterexample would not be valid. Note also that induction relies on this principle: The
statement “for all i, P(i) =⇒ P(i+ 1)” only makes sense if there is a well-defined order imposed on the
natural numbers (i.e., that 3 comes before 4, and 4 comes before 5, etc. . . ). That the natural numbers obey
this principle may be a fact you have long taken for granted; but there do exist sets of numbers which do not
satisfy this property! In this sense, the natural numbers are indeed quite special.

Concept check! Do the integers satisfy the well-ordering principle? How about the reals? How about the
non-negative reals?
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Back to our analysis of the Propose-and-Reject Algorithm. Returning to our analysis, we now prove
that when the algorithm terminates, all n candidates have job offers. Before reading the proof, see if you
can convince yourself that this is true. The proof is remarkably short and elegant, and critically uses the
Improvement Lemma.

Lemma 4.3. The propose-and-reject algorithm always terminates with a matching.

Proof. We proceed by contradiction. Suppose that there is a job J that is left unpaired when the algorithm
terminates. It must have made an offer to all n of the candidates on its list and been rejected by all of them.
By the Improvement Lemma, since its offer was rejected, each of these n candidates has had a better offer
in hand since J made an offer to her. Thus, when the algorithm terminates, n candidates have n jobs on a
string not including J. So there must be at least n+1 jobs. But this is a contradiction, since there are only n
jobs by assumption.

To complete our analysis of the propose-and-reject algorithm, we need to verify the key property that the
matching produced by the algorithm is stable.

Theorem 4.1. The matching produced by the algorithm is always stable.

Proof. We give a direct proof that, in the matching output by the algorithm, no job can be involved in a
rogue couple. Consider any couple (J,C) in the final matching and suppose that J prefers some candidate
C∗ to C. We will argue that C∗ prefers her job to J, so that (J,C∗) cannot be a rogue couple. Since C∗

occurs before C in J’s list, J must have made an offer to C∗ before it made an offer to C. Therefore, by the
Improvement Lemma, C∗ likes her final job at least as much as J, and therefore prefers it to J. Thus no job
J can be involved in a rogue couple, and the matching is stable.

Notice that we did this proof of stability from the perspective of the jobs and not from the perspective of the
candidates.

5 Optimality
In Section 4.2, we showed that the propose-and-reject algorithm always outputs a stable matching. But is
this so impressive? Will your employment system really be successful outputting matches which are just
good enough? To offer the best service (and to displace the current approach), you would ideally strive for
some notion of optimality in the solutions you obtain.

Consider, for example, the case of 4 jobs and 4 candidates with the following preference lists (for simplicity,
we use numbers and letters below to label the jobs and candidates):

Jobs Candidates
1 A B C D
2 A D C B
3 A C B D
4 A B C D

Candidates Jobs
A 1 3 2 4
B 4 3 2 1
C 2 3 1 4
D 3 4 2 1

For these lists, there are exactly two stable matchings: S= {(1,A), (2,D), (3,C), (4,B)} and T = {(1,A), (2,C),
(3,D), (4,B)}. The fact that there are two stable matchings raises the questions: What is the best possible job
for each candidate? What is the best possible candidate for each job? For example, let us consider job 2.
The trivial guess for defining the best partner for 2 is its first choice, candidate A; unfortunately, A is just
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not a realistic possibility for taking this job, as matching this job with A would not be stable, since this job
is so low on her preference list and other jobs also prefer A. Indeed, there is no stable matching in which 2
is paired with A. Examining the two stable matchings, we find that the best possible realistic outcome for
job 2 is to be paired with candidate D. This demonstrates that the notion of “best partner” can be a bit fuzzy
if we are not careful.

So, let us be careful; inspired by the discussion above, let’s make a more precise and tenable definition of
optimality.

Definition 4.2 (Optimal candidate for a job). For a given job J, the optimal candidate for J is the highest
rank candidate on J’s preference list that J could be paired with in any stable matching.

In other words, the optimal candidate is the best that a job can do in a matching, given that the matching is
stable.

Concept check! Who are the optimal candidates for each job A, B, C, and D in our example above? (Hint:
The optimal candidate for job 2, as discussed above, is D.)

By definition, the best that each job can hope for is to be paired with its optimal candidate. But can all jobs
achieve this optimality simultaneously? In other words, is there a stable matching such that each and every
job is paired with its optimal candidate? If such a matching exists, we will call it a job/employer optimal
matching. Returning to the example above, S is a job/employer optimal matching since A is 1’s optimal
candidate, D is 2’s optimal candidate, C is 3’s optimal candidate, and B is 4’s optimal candidate.

Similarly, we can define an optimal job for a candidate.

Definition 4.3 (Optimal job for a candidate). For a given candidate C, the optimal job for C is the highest-
ranked job on C’s preference list that C could be paired with in any stable matching.

In other words, the optimal job is the best job that a candidate could get in a matching, given that the
matching is stable.

We can define a candidate optimal matching, which is the matching in which each candidate is paired with
her optimal job.

Concept check! Check that T is a candidate optimal matching.

We can also go in the opposite direction and define the pessimal candidate for a job to be the lowest ranked
candidate that it is ever paired with in some stable matching. This leads naturally to the notion of a employer
pessimal matching — can you define it, and also a candidate pessimal matching?

Now, we get to the heart of the matter: Who is better off in the Propose-and-Reject Algorithm — jobs/em-
ployers or candidates?

Theorem 4.2. The matching output by the Propose-and-Reject algorithm is job/employer optimal.

Proof. Suppose for sake of contradiction that the matching is not employer optimal. Then, there exists a
day on which some job had its offer rejected by its optimal candidate; let day k be the first such day. On
this day, suppose J was rejected by C∗ (its optimal candidate) in favor of an offer from J∗. By the definition
of optimal candidate, there must exist a stable matching T in which J and C∗ are paired together. Suppose
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T looks like this: {. . . ,(J,C∗), . . . ,(J∗,C′), . . .}. We will argue that (J∗,C∗) is a rogue couple in T , thus
contradicting stability.

First, it is clear that C∗ prefers J∗ to J, since she rejected an offer from J in favor of an offer from J∗ during
the execution of the propose-and-reject algorithm. Moreover, since day k was the first day when some job
had an offer rejected by its optimal candidate, before day k, job J∗ had not had its offer rejected by its optimal
candidate. Since J∗ made an offer to C∗ on day k, this implies that J∗ likes C∗ at least as much as its optimal
candidate, and therefore at least as much as C′ (its partner in the stable matching T ). Therefore, (J∗,C∗)
form a rogue couple in T , and so T is not stable. Thus, we have a contradiction, implying the matching
output by the propose-and-reject algorithm must be employer/job7 optimal.

What proof techniques did we use to prove this Theorem 4.2? Again, it is a proof by induction, structured
as an application of the well-ordering principle.

Concept check! Where did we use the well-ordering principle in the proof of Theorem 4.2?

Exercise. Can you rewrite the proof of Theorem 4.2 as a regular induction proof? (Hint: The proof is really
showing by induction on k the following statement: For every k, no job gets rejected by its optimal candidate
on the kth day.)

We conclude that employers would fare very well by following this algorithm. How about the candidates?
The following theorem confirms a sad truth:

Theorem 4.3. If a matching is employer/job optimal, then it is also candidate pessimal.

Proof. We proceed by contradiction. Let T = {. . . ,(J,C), . . .} be the employer optimal matching (which we
know from Theorem 4.2 is output by the algorithm). Suppose for the sake of contradiction that there exists a
stable matching S = {. . . ,(J∗,C), . . . ,(J,C′), . . .} such that job J∗ is lower-ranked on C’s preference list than
job J (i.e., J is not her pessimal job). We will argue that S cannot be stable by showing that (J,C) is a rogue
couple in S. By assumption, C prefers job J to J∗ since J∗ is lower on her list. And J prefers candidate C to
its partner C′ in S because C is its partner in the employer optimal matching T . Contradiction. Therefore,
the employer optimal matching is candidate pessimal.

In light of these findings, what does the propose-and-reject algorithm teach us? Institutional structure mat-
ters greatly in the distributional quality of outcomes, and institutional structure reflects real-world power
and its history.

Exercise. What simple modification would you make to the propose-and-reject algorithm so that it always
outputs a candidate optimal matching?

Let us close with some final comments about the National Residency Matching Program. Until recently
the propose-and-reject algorithm was run8 with the hospitals doing the proposing, and so the matchings

7What we have actually proved is that the propose-and-reject algorithm returns a matching that is optimal for the “proposers.”
In our case, the employers/jobs are the ones that make offers, so it is employer/job optimal. If we ran propose-and-reject with
candidates proposing, then it would be candidate-optimal.

8Everything happens inside a computer. None of the intermediate offers are actually made to humans, only the final stable offer.
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produced were hospital optimal. In the nineties, the roles were reversed9 so that the medical students were
proposing to the hospitals. More recently, there were other improvements made to the algorithm which the
N.R.M.P. used. For example, the matching takes into account preferences for married students for positions
at the same or nearby hospitals.

6 Further Reading (optional)
Though it was in use 10 years earlier, the propose-and-reject algorithm was first properly analyzed by Gale
and Shapley, in a famous paper dating back to 1962 that still stands as one of the great achievements in the
analysis of algorithms. The full reference is:

D. Gale and L.S. Shapley, “College Admissions and the Stability of Marriage,” American Mathematical
Monthly 69 (1962), pp. 9–14.

Stable matchings and related variants remains an active topic of research in EECS (and economics!). Al-
though it is by now 30 years old, the following very readable book covers many of the interesting develop-
ments since Gale and Shapley’s algorithm:

D. Gusfield and R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, 1989.

9This role reversal was possible precisely because the algorithm was already running inside a computer. Switching who makes
offers in the outside world would have been far harder to do credibly given the difference in real-world negotiating power between
medical students and hospitals. This is an important lesson in the ordering of improvements as you try to work towards change in
the real world. A non-hospital-optimal automated matching system would never have been adopted in the first place, and then an
intern-optimal matching system would have always remained an idealistic fantasy.
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