
CS 70 - SPRING 2026

LECTURE 7 : FEB .

10

Next topic : Modular Arithmetic

Modular arithmetic basics

computation mod n : addition /multiplication ,
exponentiation

GCD and inverses

Chinese Remainder Theorem

Fermat's Little Theorem

Application : RSA Cryptosystem

(More applications later)

Modular arithmetic : arithmetic limited to integers
in a bounded range {0, 1,2 , . . . > m- I } for some m

E.g. : Days ofthe week (m = 7)

1
☐ = Su

6-
- Sa
, ,

I = Mo

5- Fr ✓ \2=Tu

/ ↳ = we Today -_ Tu Feb .

10
4=Th

Q : What day is Apr. 6 ?
A :

Residue classes f- equivalent numbers) mod 7

0 : { . - - , -14 , -7,0 , 7, 14,21 , - - - }
1 : { - -

-

, -13 , -6 , I , 8 , 15,22, - - - }

2 : { . - - , -12 , -5,2 , 9 , 16,23 , - - - }

: :

6 : { . . -
,
-8

,
-1,6, 13.20.27 , - -

- }

We write (e.g.)
23=-2 (mod 7) - I = 6 (mod7)
- 14=-0 (mod 7)

Generally : a = bcmodm) riff m / (a- b)

Computation mod m

Example : (759×46)+2268 (mod 7)

= (3×4) + 0 (mod 7)

I 12 (mod 7)

= 5 knot7)

Usefulfact : can always reduce intermediate results
mod m → no large numbers !

Formally : Cat b) = ((a mod m) ± (bmodm)) modm
ab =@modus)x(b modm)) modm

Proof : Ex . or see notes

Exponentiation
Addition multiplication are efficient (at most Otr)
where n = # of bits in numbers)

What about exponentiation ?

Example : Compute 342 (mod 53)

Method 1 : 32=9
;
33=27

;
34--81=28

35--3×28 = 84 = 31 , - - -

of multiplications = 41 ← generally ,
m-1 multipliers.

Method 2 : [repeated squaring] to compute xm

Note : # of digits in decimal number ✗ is 409,0×1+1
of bits in binary number ✗ is Llogzx) + I

Exponentiation
Example : Compute 342 (mod 53)

Method 2 : [repeated squaring]
Generally :42=7858 TO in binary #of multiplications

so 342 = 332×38 × 32 to compute ✗
m

f 2x#of bits in mcompute :
= Ollogzm)

5=9

} 3%3%3%534--9=81 = €8

38--282--784=-42 = 13×42×9

316--422--1764=15 I 13×1-117×9

332--152--225=-13 I 13 ✗C-99)

I 13×7 = 91 = 38
of multiplications = 7 I

What about division ?

Q : What does 4÷ 3 (mod 7) mean ?
A : 4 ÷ 3 = 4×(3-1) (mod 7) , where 3-

'
is

the inverse of 3 Quod 7)

Defa : ✗
-1 (the inverse of ×) mod m is the

unique number (mod m) s - t .

✗ (x- 1) = 1 (mod m)

ALERT : We are assuming hens that ✗
- ' exists

and is unique % Need to prove this !

E. g. : 3×5--15=-1 (mod 7)
So 5 is the inverse of 3 (mod 7)

Example : Inverse of 12 mod 35 ?

Example : Inverse of 10 mod 35 ?

1×10 = 10

2×10 = 20

3×10 = 30 } " "" "° """" "d4×10 = 40=-5

5×10 = 50=-15

6×10 = 60=-25

7×10 = 35=-0 ← ALERT ? Two non-zero

8×10 = 80 = 10 numbers multiply to 01
9×10 = 90 = 30

Theorem : ✗ has an inverse mod m ⇐ gcdlx.vn) =L

Proof : ⇒

Theorem : ✗ has an inverse mod m ⇐ gcdlx.vn) -4

Proof : ⇐

Example : m=7
,
✗=3

Picture of the sequence 0, × , 2x , . . - > 6×

0 > 0

1
y
l

2 > 2

3-1=5 (mod 7)
3

>
3

4 > 4

5 > 5

6 ✓ 6

Corollary : Every ✗ 1=0 has an inverse @odp)
when p is a prime

Example : Inverses mod 11 Inverses mod 10

1-1=1 1-1 = 1

2-1 = 6 6-1--2
3-
'
= 7 7-

'

=3
3-

'

= 4 4-
'

=3 g-
'
= 9

5-
'
= g g-1=5

7-
'
= 8 8-1=7 Integers coprime

with 10 : {1,3, 7,9 }
10-1--10 [= C- 1) mod 11]

Application of inverses

solving linearequations mod in

Eg . ÷: 12✗ = 11 (mod 35)

How to compute gcd ?

Euclid 's Algorithm
Claim : If ✗ → y > 0 their

gcdlx ,y) = godly , ✗Mody)

Proof : Suffices to prove that
d / ✗ it dly ⇐> dly d) ✗ mody

✗ = (✗ divy) y + ☒ mod y)
④ follows immediately from this

Euclid 's Algorithm
function gcdlxiy) {assume ✗zy go

if y = 0 then output(x) ×>0 }

else output (golly , ✗mody))
Correctness : strong induction on y fusing previous

Claim)

Examples :

Euclid 's Algorithm
function gcdlxiy) {assume ×>y go

if y = 0 then output(x) ×>0 }

else output (golly , ✗mody))

Claim : Running time is ON where n = # bits in ✗

Proof :

Computing inverses
Given positive integers ×

, y , suppose we could compute
integers a ,b such that

gcd (Ky) = ax + by
NIT a modular
equation !

Then if gcdlxiy) -4 we get
axt by = 1

and hence

by = 1 (mod x)
so b=y-1 (modx) (and a = ✗" Cmody)]

Eg .
: 1 = (-1×35)+(3×12)
⇒ 12-1=3 (mod 35)

Extended Euclidean Algorithm

function e-gcdcxiy)
if y=O then return (x > 1,0)
else

(d) a. b) = e-godly , ☒ Mody)
return (d

,
A
,
B) ← D= gcdlxiy)=AxtBy

What should # Bbe ?

Know : D= ay + bfxmody) (1)
Want : D= Ax + By (2)

From (1) : D= ay + b. (x - ylxdivy))

=¥n×+@bfy
So set A=b

,
B= a- ☒divy)b

function e-gcdcxiy)
if y = 0 then return (x , 1,0)
else

(d) a. b) = e-godly , ☒ Mody)
return (d

,
b
,
a- (xdivy) b)

Example : e-god 135,12)

I
e-god 42,11)
t

C-gcd (11 , 1)
t

e- gcd (1,0)

correctness ☒ running time analysis as for basic gcdalg .

function e-gcdcxiy)
if y=O then return4,1 , 0)
else

(d) a. b) = e-godly , ☒ Mody)
return / d

,
b
,
a- lxdivy) b)

Example : e- gcd 135,10) (5,1 , -3) 5=1.35+1-37.10
t in

C- gcd(10,5) (5,0 , 1) 5=0.10+1.5

t in
c- gcd(5,0) (5. 1,0) 5=1.5+0.0

