
CS 70 - SPRING 2026

LECTURE 7 : FEB .

10



Next topic : Modular Arithmetic

Modular arithmetic basics

computation mod n : addition /multiplication ,
exponentiation

GCD and inverses

Chinese Remainder Theorem

Fermat's Little Theorem

Application : RSA Cryptosystem

(More applications later)



Modular arithmetic : arithmetic limited to integers
in a bounded range {0, 1,2 , . . . > m- I } for some m

E.g. : Days ofthe week (m = 7)

1
☐ = Su

6-
- Sa
, ,

I = Mo

5- Fr ✓ \2=Tu

/ ↳ = we Today = Tu Feb .

10
4=Th

Q : What day is Apr. 6 ?
A :# days = 18+31+6=55

= (7×7)+6 Mo
.

Feb 10 : ☒
2+6--8=(7×1)+1 = III



Residue classes f- equivalent numbers) mod 7

0 : { . - - , -14 , -7,0 , 7, 14,21 , - - - }
1 : { - -

-

, -13 , -6 , I , 8 , 15,22, - - - }

2 : { . - - , -12 , -5,2 , 9 , 16,23 , - - - }

: :

6 : { . . -
,
-8

,
-1,6, 13.20.27 , - -

- }

We write (e.g. )
23=-2 (mod 7) - I = 6 (mod7)
- 14=-0 (mod 7)

Generally : a = bcmodm) riff m / (a- b)



Computation mod m

Example : (759×46)+2268 (mod 7)

7)+31×19×71+4] = (3 × 4) + 0 (mod7)
E 3×4 (mod7)

= 12 (mod7)

I ⑤ cnrd7#

Usefulfact : can always reduce intermediate results
mod m → no large numbers !

Formally : Cat b) = ((a mod m) ± (bmodm)) modm
ab =@a modus)x(b modm) ) modm

Proof : Ex . or see notes



Exponentiation
Addition multiplication are efficient (at most Otr )
where n = # of bits in numbers ) ✗ * y

What about exponentiation ?

Example : Compute 342 (mod 53) :#
Method 1 : 32=9

;
33=27

;
34--81=28

35--3×28 = 84 = 31 , - - -

# of multiplications = 41 ← generally ,
m-1 multipliers.

Method 2 : [repeated squaring] to compute xm

Note : # of digits in decimal number ✗ is 409,0×1+1
# of bits in binary number ✗ is Llogzx) + I



Exponentiation
Example : Compute 342 (mod 53)

Method 2 : [repeated squaring]
Generally :42=7858 TO in binary #of multiplications

so 342 = 332×38 × 32 to compute ✗
m

f 2x#of bits in mcompute :
= Ollogzm)

5=9

} 3%3%3%534--9=81 = €8

38--282--784=-42 = 13×42×9

316--422--1764=15 I 13×1-117×9

332--152--225=-13 I 13 ✗C-99)

I 13×7 = 91 = 38
# of multiplications = 7 I



What about division ?

Q : What does 4÷ 3 (mod 7) mean ?
A : 4 ÷ 3 = 4×(3-1) ( mod 7) , where 3-

'
is

the inverse of 3 Quod 7)

Defa : ✗
-1 (the inverse of ×) mod m is the

unique number (mod m) s - t .

✗ (x- 1) = 1 (mod m)

ALERT : We are assuming hens that ✗
- ' exists

and is unique % Need to prove this !

E. g. : 3×5--15=-1 (mod 7)
So 5 is the inverse of 3 (mod 7)



Example : Inverse of 12 mod 35 ?
3 ✗ 12 = 36 = I fund35)

so 12-1 = 3 Curd 35)

Example : Inverse of 10 mod 35 ?

1×10 = 10

2×10 = 20

3×10 = 30 { " "" " """" "d4×10--40=-5
5×10 = 50=-15

6×10 = 60=-25

7×10 = 35=-0 ← ALERT ? Two non-zero

8×10 = 80=-10 numbers multiply to 01
9×10 = 90 = 20

i. i. (repeats)



Theorem :X has an inverse mod m ⇐ gcdlx,m)=l

Proof : ⇒ Sp . ✗ has an inverse mod m copñm
i.e. ax =L (modm) for some a

So ax = km + 1 for some K c- Z

Let D= gcdlx.vn)
Then d / ax and d / km

Hence dI@x-km1i.e.d / 1

⇒ D= I ✓



Theorem : ✗ has an inverse mod m ⇐ gcdlx.vn) =L

Proof : ⇐ Consider the sequence of multiples of ✗ :
O
,
X , 2x , - . - .

. Cm - 1) ✗ (mod m)
Claim : All of these numbers are different vfwdml
This finishes proof became one of the
numbers in the sea . must be 1 lmodm)

Pwofofclaim : Sp . for ☒ that ax = bx Rodin)
with 04 b <as in-1

Then in / fax- bx) ⇒ m / ✗ (a-b)
But gcd (✗in) =L , so m ka- b)
Hence a = b Cmodm) ☒

✓



Example : m=7
,
✗=3

Picture of the sequence 0, × , 2x , . . - , 6×

0 > 0

1
y
l

2 > 2

3-1=5 (mod 7)
3

>
3

4 > 4

5 > 5

6 ✓ 6

fb-ijeuti-on-betweenEQ-sm-isand.it#-



Corollary : Every ✗ 1=0 has an inverse @odp)
when p is a prime

Example : Inverses mod 11 Inverses mod 10

1-1=1 1-1 = 1

2-1 = 6 6-1--2
3-
'
= 7 7-

'

=3
3-

'

= 4 4-
'

=3 g-
'
= 9

5-
'
= g g-1=5

7-
'
= 8 8-1=7 Integers coprime

with 10 : {1,3, 7,9 }
10-1--10 [= C- 1) mod 11]



Application of inverses

solving linearequations mod in

Eg . ÷. 12✗ = 11 (mod 35)

12
"

curd 35) = 3

multiply earn . by 12-1=3 :

✗ = 3×11 =③ Quod35)



How to compute gcd ?

Euclid 's Algorithm
Claim : If ✗ → y > 0 their

gcdlx ,y ) = godly , ✗Mody)

Proof : Suffices to prove that
d / ✗ ☒ dly ⇐> dly d) ✗ mody ④

✗ = (✗ divy)y + (✗ Mody)
④ follows immediately from this



Euclid 's Algorithm
function gcdlxiy ) {assume

xzyzoify-oth.euoutput@) ×>0 }

else output (golly , xmody))
Correctness : strong induction on y fusing previous

Claim )

Examples :
god /35,12) gcd (35,10)

= gcd(12,11 ) =gcd(10,5)
= gcd(11,1 ) =gcd(5,0)
= gcd(1,0) = 5 ✓
= I ✓



Euclid 's Algorithm
function gcd (Ky) {assume ×>y go

if y = 0 then output(x) ×>0 }

else output (golly , ✗mody))

Claim : Running time is 0 In) where n = # bits in ✗

Proof : Claim that after every two recursive calls,
the first input (X) decreases by at least a factor

of 2
case# : ye ¥ Then ✗→ ys % 1

Castiel : y > ¥ Then ✗→ y→ ✗ mody
But ✗ mody = ✗-y < Yz

✓
So #of bits in ✗ argument decreases by 1 at most
every 2 rec . calls . So total #Avec. calls is 01in) .


