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Last Lecture

Arithmetic mod m : numbers are {0,1, . . - in- I }

a =b (modm) <⇒ m ) (a-b)
e. g. 27=-5 (mod 11 ) -3=-7 (mod 10)

Addition
,
subtraction

, multiplication mod in

Exponentiation by repeated squaring
Inverse ×" of ✗ (mod m) : ✗ • ✗ -1=-1 (mod m)

e.g. 3-1=10 (mod 29) ; 3-1=19 (mod 28); 3-
'
= ?? (mod27)

✗ has an inverse fmodm)⇐> gcdlx.vn) =L

Euclid's algorithm for computing gcd



Today

Computing inverses : extended Euclid

Chinese Remainder Theorem

Fermat's Little Theorem

Next Lecture

RSA cryptosystem



Euclid 's Algorithm
function gcdlxiy )
if 9=0 then output@)

{assume ×>ya
×>0 }

else output (golly , xmody))

Examples :
god /35,12) gcd (7-2,45)

= gcd(12,11 ) = gcd (45,27)
= gcd(11 > 1) = god (27,18 )
= gcd(1,0)

= gcd(18,9)
= I ✓

= gcd(9,0)
= 9 ✓



Computing inverses
Given positive integers ×

, y , suppose we could compute
integers a ,b such that

gcd (Ky) = ax + by
NIT a modular
equation !

Then if gcdlxiy) -4 we get
axt by = 1

and hence

by = 1 (mod x)
so b=y-1 (modx) ( and a = ✗" Cmody )]

Eg .
: 1 = (-1×35)+(3×12)
⇒ 12-1=3 (mod 35)



Extended Euclidean Algorithm

function e-gcdcxiy)
if y=O then return (x > 1,0)
else

(d) a. b) = e-godly , ☒ Mody)
return ( d

,
A
,
B ) ← D= gcdlxiy)=AxtBy

What should # Bbe ?

Know : D= ay + bfxmody) (1)
Want : D= Ax + By (2)

From (1) : D= ay + b. ( x - ylxdivy) )

=¥n×+@bfy
So set A=b

,
B= a- ☒divy)b



function e-gcdcxiy)
if y = 0 then return (x , 1,0)
else

(d) a. b) = e-godly , ☒ Mody)
return ( d

,
b
,
a- (xdivy) b)

Example : e-god 135,12)

I
e-god 42,11)
t

C-gcd ( 11 , 1)
t

e- gcd ( 1,0)

correctness ☒ running time analysis as for basic gcdalg .



function e-gcdcxiy)
if y=O then return4,1 , 0)
else

(d) a. b) = e-godly , ☒ Mody)
return / d

,
b
,
a- lxdivy) b)

Example : e- gcd 135,10) (5,1 , -3) 5=1.35+1-37.10
t in

C- gcd(10,5) (5,0 , 1) 5=0.10+1.5

t in
c- gcd(5,0) (5. 1,0 ) 5=1.5+0.0



Sunzi Suanjing
3rd-5th century

Chinese Remainder Theorem

Method for solving systems of modular equations

E. g. ✗ = 2 (mod 13)

✗ = 7 (mod 10) )
Generally : ✗ = a , lmodn , )

✗ = 92 (mod nz) } gcdtlnnz)=1

Goal : solve for ✗ (mod n , na)

Theorem [CRT] : There is a unique ✗ (Modum)

that satisfies the above eceuations



Theorem [CRT] : Provided gcdln , ,nz) =L , there is a
unique ✗ (mod ninz) that satisfies

✗ = a
,
(Mod nil ✗ = 92 (Mod Nz)

Proof :
1*1



Example : ✗ = 2 (mod 13)

✗ = 7 (mod to)
[9cd(13,101=1]

Construct U , = nzlni ' modn ,) =

Uz = n , (ni
'
modnz) =

Then ✗ = a ,U , -192 Uz



CRT : General Version

Let n
, , nz, - - → hk be coprime (i. e. , gcdlni ,nj 1=1 V-i=j)

Let N = 1¥
,
hi .

Then there is a unique × (mod N) that satisfies
✗ = a , (mod n , )
:

✗ = ak (mod nu )

Proof : Same as before !

Define ui : = ¥ ¥1
- '

(mod n :))
Then ✗ = É ai Ui is the solution (mod N)

i=L

Applications : If we're working mod N , we can instead
just work modni for each i , keeping the numbers small

!



Example :

×¥ZgY°m?¥
, , } A- 5×7×11=385✗ = 3 (mod7)

U
,
= (¥5 ' modn , ) = 77177

- '
mod 5)

= 77 ( 2-' mod 5) = 77×3=231

Uz = ¥41,1
- '

modnz ) = 55/55
- 'mod 7) = 55×6=330

U}
= ((Ng)" mod nz) = 35/35

'
mod 11) = 35×6=210

✗= A
,
U
, -192 Uz -193 V3

= (2×231)+(3×330) + (8×210)
= 462 + 990 + 1680

I 77 + 220 + 140 (mod 385) = 52 (mod 385)



Fermat 's Little Theorem
"

computing with
exponents

"

For any prime p ,

at- ' = 1 (mod p) ta E { 1,2, . . . > P- I }

Example : 16 = 26=-36 = 46=-56 I 66=-1 (mod 7)

4311008 = 1 (mod 1009)

614 = 62=-36 = 10 (mod 13)

3244 = 3
"
= 81 = 13 (mod 17)

Corollary : For any prime p ,

at = a (modp) ta c- { 0,1 , - - - sp- I }



Theorem : For any prime p ,

at- ' = 1 (urodp) ta E { 1,2, . . . > Pt }

Proof : Consider the numbers {0, a ,2a, - - - Kp- 1)a} modp
Last lecture :-. these numbers are all different soo > o

1 y
1

they cover {0,1 , - - - , p- l } a > z

3
>

3

4 > 4Hence the sets 5- { 1,2 , . . . > P- I } s - s

✓ 6

S'={a,2a , . . - Cp- 1)a modp }
•

Ex:p-7
a =3

are the same set !

But ( ✗ / modp = I ✗2x . - - ✗ (p-1) = (Pt) ! fnodp)

and /¥s , X) modp = a×2ax - - -✗$ -Da =(p_1) !at
' lmodp)

since(10-1) ! has an inverseCmodp) , we conclude at-1=-1 tnodp)



Euler's TotientFunction

For positive integer n , let ZE denohtthe
set of integers ✗ modn such that gcdlx.nl =L

Examples : For prime p , Zp* = { 1,2 , - - - , p- I }
2¥ = { 1,3 , 7,9 }

Define celn) = 124*1 ( Euler's Tolient Function)

For prime p , q (p) =p- I

6110) = 4

Euler'sTheorem : For any a c-Zn*, of" El fmodn)



Euler'sTheorem : For any a c-Zn*, oil"' =L fnodn)

Note : Fermat 's Little Theorem is a special case
(when n is prime)

Proof : Similar to proof of FLT .

For a c-Zn*
.
consider the set 5.= {ax mod n : ✗ c-ZE}

Claim : These numbers are all different
,
and all are inZn*

Hence 5 is the same as the set Zn* I
Thus IT ✗ = ¥,

✗ (mod n)
✗c-ZE

= a
"" IT

✗c-ZE
✗ (mod a)

So a
""
= 1 (mod n) ✓



Euler'sTheorem : For any a c-Zn*, oil"' =L fnodn)

Note : Fermat 's Little Theorem is a special case
(when his prime)

Example : n= 10 Zn*= { 1. 3. 7,9} celn)=4

74=-1 (mod 10) [74--2401]

3
"
= 33--27=7 (mod 10)

1
>
I

1
1

1

3 3 2 > 2

7 > 7 c. f. 3
>

3

4 > 4

g
>
9 5 > 5

✗3 (mod 10) 6 ' 6

✗ 3 (mod7)



For a c-Zn*
.
consider the sets:={ax mod n : ✗ c-ZE}

Claim : These numbers are all different
,
and all are inZn*

Proof of Claim : Suppose for ☒ that ax = ay modn

for some ×
, y c- 2¥ with ✗ =/ y

Then n tax-ay) , i.e , n / acx-y )
But at Zn* so gcd Ca , n) =L

Hence nkx-y) , so ✗ =y (mod n) ☒

Also
, axknodn) c- ZE because a

>
✗ EZE

so gcd (ax , n) = I
☐


